Refine Your Search

Topic

Search Results

Standard

Verification of Landing Gear Design Strength

2010-04-13
CURRENT
AIR1494B
Verification of landing gear design strength is accomplished by dynamic and static test programs. This is essentially a verification of the analytical procedures used to design the gear. An industry survey was recently conducted to determine just what analysis and testing are currently being applied to landing gear. Timing in relation to first flight of new aircraft was also questioned. Opinions were solicited from designers of the following categories and/or types of aircraft: a. military - large land based (bomber); b. mililtary - small land based (fighter); c. military - carrier based (Navy); d. military - helicopter (large); e. military - helicopter (small-attack); f. commercial - large (airliner); g. commercial - small (business); and h. USAF (WPAFB) - recommendations. It is the objective of this AIR to present a summary of these responses.
Standard

Tests, Impact, Shock Absorber Landing Gear, Aircraft

2012-10-03
CURRENT
AS6053A
This specification covers definition of landing impact tests which are to be conducted on landing gear assemblies including shock absorbers, suggested instrumentation for the tests and required data of the resulting test report. It is intended to standardize impact test procedures on landing gear shock absorbers and to provide sufficient data to allow evaluation of the design with respect to requirements of MIL-L-8552 and MIL-S-8959 as applicable.
Standard

Tests, Impact, Shock Absorber Landing Gear, Aircraft

2007-12-05
HISTORICAL
AS6053
This specification covers definition of landing impact tests which are to be conducted on landing gear assemblies including shock absorbers, suggested instrumentation for the tests and required data of the resulting test report. It is intended to standardize impact test procedures on landing gear shock absorbers and to provide sufficient data to allow evaluation of the design with respect to requirements of MIL-L-8552 and MIL-S-8959 as applicable.
Standard

SAFE-LIFE LIMITS FOR LANDING GEAR STRUCTURES

2018-04-26
WIP
AIR6949
This document describes the approaches taken to define safe-life limits for the management of fatigue in landing gear structures, and the substantiation of those limits through full-scale fatigue testing. The safe-life scatter factors considered in a range of military and civil regulatory standards are also reviewed.
Standard

Plain Bearing Selection for Landing Gear Applications

2023-08-30
WIP
AIR1594E
This document is intended to give advisory information for the selection of plain bearings and bearing materials most suitable for aircraft landing gear applications. Information included herein was derived from bearing tests and service experience/reports. Airframe/landing gear manufacturers, commercial airlines, the U.S. Air Force and Naval Air Systems Command provided input for the document. Information is given on bearing installation methods and fits that have given satisfactory performance and service life. Base metal corrosion is a major cause of problems in bearing installations for landing gears. Therefore, methods of corrosion prevention are discussed. Effort is directed toward minimizing maintenance and maximizing life expectancy of landing gear bearings. Lubricated and self-lubricating bearings are also discussed. There are wide ranges of bearing load and motion requirements for applications in aircraft landing gears.
Standard

Nitrogen Absorption/Desorption (Gas Dissolution) in Aircraft Shock Absorbers

2019-04-18
WIP
AIR6942
This document outlines the current state of the art in the understanding of gas in solution in shock absorber oils in unseperated shock absorbers. A literature review, overview of Henry's law, Henry's law coefficients for known gas and oil couples, in-service operational problems, lessons learned, and potential future work will be discussed in the document.
Standard

Mechanical Switch Usage for Landing Gear Applications

2023-07-11
WIP
AIR4077A
This Aerospace Information Report (AIR) will examine considerations relative to the use of mechanical switches on aircraft landing gear, and present "lessons learned" during the period that these devices have been used.
Standard

Landing Gear, Aircraft Shock Absorber (Air-Oil Type)

2023-10-24
WIP
AS8703
This project will convert MIL-L-8552 (including changes defined in Amendment 2, 10 December 1968) word-for-word into an SAE Aerospace Standard. The new document will be approved in accordance with SAE's "accelerated approval" process.
Standard

Landing Gear Switch Selection Criteria

2022-07-06
CURRENT
AIR5024A
The scope of this document is to discuss the differences between electromechanical and proximity position sensing devices (sensor or switch) when used on landing gear. It also contains information which may be helpful when applying either type of technology after the selection has been made. The purpose is to help the designer make better choices when selecting a position-sensing device. Once that choice has been made, this document includes information to improve the reliability of new or current designs. It is not intended to replace recommendations from sensor manufacturers or actual experience, but to provide a set of general guidelines based on historic infromation of what is being used.
Standard

Landing Gear Shock Strut Hydraulic Fluid

2015-04-27
HISTORICAL
AIR5358
This SAE Aerospace Information Report (AIR) was prepared by a panel of the SAE A-5 Committee. This document establishes the specifications for fluids used in landing gear shock struts with extreme pressure and antiwear additives that have been added for improved lubrication. This document requires qualified products.
Standard

Landing Gear Shock Strut Hydraulic Fluid

2016-05-06
HISTORICAL
AIR5358A
This document describes fluids used in landing gear shock struts with extreme pressure and antiwear additives that have been added for improved lubrication.
Standard

Landing Gear Shock Absorption Testing of Civil Aircraft

2020-07-14
CURRENT
ARP5644A
The intent of this document is to provide recommended practices for conducting shock absorption testing of civil aircraft landing gear equipped with oleo-pneumatic shock absorbers. The primary focus is for Part 25 aircraft, but differences for Part 23, 27, and 29 aircraft are provided where appropriate.
Standard

Gland Design: Scraper, Landing Gear, Installation

2022-10-26
CURRENT
AS4052C
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/ wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of AS4716, the accepted gland standard for AS568, O-ring packing seals. Piston rod diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. The traditional scraper design installed into the glands detailed in Table 1 typically utilize components made from PTFE, urethane, or nitrile materials. These scraper designs, while still acceptable, must be reviewed in consideration to deicing, cleaners and disinfectant fluids applied to or in contact with the landing gear, as the materials of construction for the installed scrapers may not be compatible to these fluids.
Standard

Gland Design: Scraper, Landing Gear, Installation

2006-08-02
HISTORICAL
AS4052A
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of AS4716, the accepted gland standard for MS28775, O-ring packing seals. Piston diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. AS4088 is similar to this document, but was developed by SAE A-6 for flight control and general-purpose cylinders. It differs from this document primarily by the clearance between the rod (piston) and outer gland wall. Since landing gears are more susceptible to dirt contamination, the additional clearance provides a larger path to allow excessive dirt accumulation to exit the gland.
Standard

Gland Design: Scraper, Landing Gear, Installation

2021-02-03
HISTORICAL
AS4052B
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of AS4716, the accepted gland standard for MS28775, O-ring packing seals. Piston rod diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. The traditional scraper design installed into the glands detailed in Table 1 typically utilize components made from urethane or nitrile materials. These scraper designs, while still acceptable, must be reviewed in consideration to deicing, cleaners and disinfectant fluids applied to or in contact with the landing gear, as the materials of construction for the installed scrapers may not be compatible to these fluids.
Standard

Gland Design: Nominal 3/8 in Cross Section for Custom Compression Type Seals

2012-06-29
HISTORICAL
AS4832
This SAE Aerospace Standard (AS) offers gland details for a 0.364 cross section gland (nominal 3/8 in) with proposed gland lengths for compression type seals with two backup rings over a range of 8 to 20 in in diameter. A dash number system is proposed similar to AS568A. A 600 series has been chosen as a logical extension of AS568A and the 625 number has been arbitrarily chosen for the initial number. (Both 300 and 400 series begin with 325 and 425 sizes.) Seal configurations and design are not a part of this document. This gland is for use with custom compression type seals including, but not limited to, O-rings, T-rings, D-rings, etc.
X