Refine Your Search

Topic

Search Results

Technical Paper

The Contribution of Different Oil Consumption Sources to Total Oil Consumption in a Spark Ignition Engine

2004-10-25
2004-01-2909
As a part of the effort to comply with increasingly stringent emission standards, engine manufacturers strive to minimize engine oil consumption. This requires the advancement of the understanding of the characteristics, sources, and driving mechanisms of oil consumption. This paper presents a combined theoretical and experimental approach to separate and quantify different oil consumption sources in a production spark ignition engine at different speed and load conditions. A sulfur tracer method was used to measure the dependence of oil consumption on engine operating speed and load. Liquid oil distribution on the piston was studied using a Laser-Induced-Fluorescence (LIF) technique. In addition, important in-cylinder parameters for oil transport and oil consumption, such as liner temperatures and land pressures, were measured.
Journal Article

Soot and Ash Deposition Characteristics at the Catalyst-Substrate Interface and Intra-Layer Interactions in Aged Diesel Particulate Filters Illustrated using Focused Ion Beam (FIB) Milling

2012-04-16
2012-01-0836
The accumulation of soot and lubrication-derived ash particles in a diesel particulate filter (DPF) increases exhaust flow restriction and negatively impacts engine efficiency. Previous studies have described the macroscopic phenomenon and general effects of soot and ash accumulation on filter pressure drop. In order to enhance the fundamental understanding, this study utilized a novel apparatus that of a dual beam scanning electron microscope (SEM) and focused ion beam (FIB), to investigate microscopic details of soot and ash accumulation in the DPF. Specifically, FIB provides a minimally invasive technique to analyze the interactions between the soot, ash, catalyst/washcoat, and DPF substrate with a high degree of measurement resolution. The FIB utilizes a gallium liquid metal ion source which produces Ga+ ions of sufficient momentum to directionally mill away material from the soot, ash, and substrate layers on a nm-μm scale.
Journal Article

Sensitivity Analysis of Ash Packing and Distribution in Diesel Particulate Filters to Transient Changes in Exhaust Conditions

2012-04-16
2012-01-1093
Current CJ-4 lubricant specifications place chemical limits on diesel engine oil formulations to minimize the accumulation of lubricant-derived ash in diesel particulate filters (DPF). While lubricant additive chemistry plays a strong role in determining the amount and type of ash accumulated in the DPF, a number of additional factors play important roles as well. Relative to soot particles, whose residence time in the DPF is short-lived, ash particles remain in the filter for a significant fraction of the filter's useful life. While it is well-known that the properties (packing density, porosity, permeability) of soot deposits are primarily controlled by the local exhaust conditions at the time of particle deposition in the DPF, the cumulative operating history of the filter plays a much stronger role in controlling the properties and distribution of the accumulated ash.
Technical Paper

Real-Time Engine and Aftertreatment System Control Using Fast Response Particulate Filter Sensors

2016-04-05
2016-01-0918
Radio frequency (RF)-based sensors provide a direct measure of the particulate filter loading state. In contrast to particulate matter (PM) sensors, which monitor the concentration of PM in the exhaust gas stream for on-board diagnostics purposes, RF sensors have historically been applied to monitor and control the particulate filter regeneration process. This work developed an RF-based particulate filter control system utilizing both conventional and fast response RF sensors, and evaluated the feasibility of applying fast-response RF sensors to provide a real-time measurement of engine-out PM emissions. Testing with a light-duty diesel engine equipped with fast response RF sensors investigated the potential to utilize the particulate filter itself as an engine-out soot sensor.
Technical Paper

Rapid Distortion Theory Applied to Turbulent Combustion

1979-02-01
790357
A technique of calculating the evolution of turbulence during the combustion phase of a reciprocating engine cycle is presented. The method is based on a local linearization of the full non-linear equations of motion. It is valid when the turbulence is distorted more rapidly by the changes in mean flows than it interacts with itself. The theory requires as input strain rates of the deterministic mean motion, and the initial state of turbulence. Calculations are presented for the particular case of a cylindrical chamber geometry. In the burning process it is assumed that the spark plug is located on the cylinder axis and the strain field is that established by the flame front. The theory calculates the turbulence parameters during the combustion period. Combustion rates, and durations, as a function of equivalence ratio and the initial turbulent and thermodynamic conditions.
Technical Paper

Performance and Combustion Modeling of Heterogeneous Charge Engines

1985-02-01
850343
This paper reviews the phenomoneological modeling of the combustion processes for the diesel and fuel-injected stratified charge engines. Distinctions are made between phenomenological and multi-dimensional finite-difference approaches. The modeling methodologies and the basic components in these models are described. These include characterization of the fuel spray, fuel-air mixing, ignition, burning and heat transfer processes. An attempt is made in the paper to highlight the similarities and contrasts of various models and relate to their utility in addressing emission research and engine performance development objectives.
Technical Paper

Oil Conditioning as a Means to Minimize Lubricant Ash Requirements and Extend Oil Drain Interval

2009-06-15
2009-01-1782
A novel approach to condition the lubricant at a fixed station in the oil circuit is explored as a potential means to reduce additive requirements or increase oil drain interval. This study examines the performance of an innovative oil filter which releases no additives into the lubricant, yet enhances the acid control function typically performed by detergent and dispersant additives. The filter chemically conditions the crankcase oil during engine operation by sequestering acidic compounds derived from engine combustion and lubricant degradation. Long duration tests with a heavy-duty diesel engine show that the oil conditioning with the strong base filter reduces lubricant acidity (TAN), improves Total Base Number (TBN) retention, and slows the rate of viscosity increase and oxidation. The results also indicate that there may be a reduction in wear and corrosion.
Technical Paper

Modeling the Dynamics and Lubrication of Three Piece Oil Control Rings in Internal Combustion Engines

1998-10-19
982657
The oil control ring is the most critical component for oil consumption and friction from the piston system in internal combustion engines. Three-piece oil control rings are widely used in Spark Ignition (SI) engines. However, the dynamics and lubrication of three piece oil control rings have not been thoroughly studied from the theoretical point of view. In this work, a model was developed to predict side sealing, bore sealing, friction, and asperity contact between rails and groove as well as between rails and the liner in a Three Piece Oil Control Ring (TPOCR). The model couples the axial and twist dynamics of the two rails of TPOCR and the lubrication between two rails and the cylinder bore. Detailed rail/groove and rail/liner interactions were considered. The pressure distribution from oil squeezing and asperity contact between the flanks of the rails and the groove were both considered for rail/groove interaction.
Technical Paper

Modeling and Optimizing Honing Texture for Reduced Friction in Internal Combustion Engines

2006-04-03
2006-01-0647
Frictional losses in the piston ring-pack of an engine account for approximately half of the total frictional losses within the power cylinder of an engine. Three-dimensional honing groove texture was modeled, and its effect on piston ring-pack friction and engine brake thermal efficiency was investigated. Adverse effects on engine oil consumption and durability were also considered. Although many non-conventional cylinder liner finishes are now being developed to reduce friction and oil consumption, the effects of surface finish on ring-pack performance is not well understood. A rough surface flow simulation program was developed to calculate flow and stress factors that adjust the solution of the Reynolds equation for the effects of surface roughness as has been done in the literature. Rough surface contact between the ring and liner was modeled using a previously published methodology for asperity contact pressure estimation between rough surfaces.
Technical Paper

Loading and Regeneration Analysis of a Diesel Particulate Filter with a Radio Frequency-Based Sensor

2010-10-25
2010-01-2126
Accurate knowledge of diesel particulate filter (DPF) particulate matter (PM) loading is critical for robust and efficient operation of the combined engine-exhaust aftertreatment system. Furthermore, upcoming on-board diagnostics regulations require on-board technologies to evaluate the status of the DPF. This work describes the application of radio frequency (RF) - based sensing techniques to accurately measure DPF particulate matter levels. A 1.9L GM turbo diesel engine and a DPF with an RF-sensor were studied. Direct comparisons between the RF measurement and conventional pressure-based methods were made. Further analysis of the particulate matter loading rates was obtained with a mass-based total PM emission measurement instrument (TEOM) and DPF gravimetric measurements.
Technical Paper

Influence of Material Properties and Pore Design Parameters on Non-Catalyzed Diesel Particulate Filter Performance with Ash Accumulation

2012-09-10
2012-01-1728
Diesel particulate filters (DPF) are a common component in emission-control systems of modern clean diesel vehicles. Several DPF materials have been used in various applications. Silicone Carbide (SiC) is common for passenger vehicles because of its thermal robustness derived from its high specific gravity and heat conductivity. However, a segmented structure is required to relieve thermal stress due to SiC's higher coefficient of thermal expansion (CTE). Cordierite (Cd) is a popular material for heavy-duty vehicles. Cordierite which has less mass per given volume, exhibits superior light-off performance, and is also adequate for use in larger monolith structures, due to its lower CTE. SiC and cordierite are recognized as the most prevalent DPF materials since the 2000's. The DPF traps not only combustible particles (soot) but also incombustible ash. Ash accumulates in the DPF and remains in the filter until being physically removed.
Journal Article

In-Situ Optical Analysis of Ash Formation and Transport in Diesel Particulate Filters During Active and Passive DPF Regeneration Processes

2013-04-08
2013-01-0519
The formation and transport processes governing the build-up of incombustible ash deposits in diesel particulate filters (DPF) are influenced to a large extent by the filter's operating history. More specifically, the regeneration process, whether active, passive, or some variation of the two, has long been assumed to exert significant influence on the resulting ash characteristics. Until recently, only limited circumstantial evidence was available to describe differences in ash properties and distribution impacting DPF performance for filters subjected to different regeneration strategies. This work presents, for the first time, results from a comprehensive series of evaluations with optically-accessible DPF core samples showing the processes controlling the formation, transport, and interaction of the soot and ash deposits over a range of DPF regeneration conditions.
Technical Paper

In Situ Control of Lubricant Properties for Reduction of Power Cylinder Friction through Thermal Barrier Coating

2014-04-01
2014-01-1659
Lowering lubricant viscosity to reduce friction generally carries a side-effect of increased metal-metal contact in mixed or boundary lubrication, for example near top ring reversal along the engine cylinder liner. A strategy to reduce viscosity without increased metal-metal contact involves controlling the local viscosity away from top-ring-reversal locations. This paper discusses the implementation of insulation or thermal barrier coating (TBC) as a means of reducing local oil viscosity and power cylinder friction in internal combustion engines with minimal side-effects of increased wear. TBC is selectively applied to the outside diameter of the cylinder liner to increase the local oil temperature along the liner. Due to the temperature dependence of oil viscosity, the increase in temperature from insulation results in a decrease in the local oil viscosity.
Journal Article

Impact of Biodiesel on Ash Emissions and Lubricant Properties Affecting Fuel Economy and Engine Wear: Comparison with Conventional Diesel Fuel

2008-04-14
2008-01-1395
The increased use of biodiesel fuels has raised concerns over the fuel's impact on engine performance and hardware compatibility. While these issues have received much attention in recent years, less well-known are the effects of biodiesel on engine-out ash emissions and lubricant properties. Significant differences in composition between biodiesel and petroleum diesel fuels have the potential to influence ash emissions, thereby affecting aftertreatment system performance. Further, the fuel also interacts directly with the lubricant through fuel dilution, and may impact lubricant properties. In this study, a 5.9L, 6 cylinder, Cummins ISB 300 diesel engine was outfitted with a specially designed rapid lubricant aging system and subjected to a set of steady-state engine operating conditions. The lubricant aging system allows for the investigation of the interactions of emissions and combustion products, as well as fuel dilution, on lubricant properties in an accelerated manner.
Technical Paper

Heat Transfer Measurement Comparisons in Insulated and Non-Insulated Diesel Engines

1989-02-01
890570
The performance and heat transfer characteristics of a single cylinder diesel engine in the metal and in the ceramic-coat-insulated configurations were compared at the same speeds, loads and air flow rates. Compared to the metal engine, the insulated engine had a higher brake specific fuel consumption which was attributed to a slower combustion process; the exhaust as well as the time averaged surface temperatures of the insulated engine were higher. The unsteady heat flux amplitudes in the insulated engine were lower which suggested a lower overall heat flux. This lower heat flux was attributed to the lower flame temperatures because of the poor combustion quality in the non-optimized insulated engine.
Technical Paper

Experimental Survey of Lubricant-Film Characteristics and Oil Consumption in a Small Diesel Engine

1991-02-01
910741
Parallel measurements of lubricant-film behavior and oil consumption in two identical small production IDI diesel engines are presented. Oil consumption was measured using tritium as a radioactive tracer, and instantaneous film thickness data between the piston and liner were obtained using laser fluorescence diagnostics. The data covered single- and multi-grade lubricants and five different ring configurations (two-piece vs three-piece rings at various ring tensions). The data illustrate (a) oil-film profiles under the rings, especially around the leading and trailing edges, (b) accumulation of oil on piston lands and skirt, (c) circumferential variations around the bore, (d) observations on ring rotation, and (e) the piston-skirt oil-pumping mechanism. Effects of lubricants and piston-ring configurations on oil-film characteristics are investigated, and the oil consumption data are compared with oil-film thickness measurements.
Technical Paper

Engine Knock Characteristics at the Audible Level

1991-02-01
910567
The effects of combustion chamber and intake valve deposit build-up on the knocking characteristics of a spark ignition engine were studied. A Chrysler 2.2 liter engine was run continuously for 180 hours to build up intake valve and combustion chamber deposits. In the tests reported here, the gasoline used contained a deposit controlling fuel additive. The engines's octane requirement increased by 10 research octane numbers during this extended engine operating period. At approximately 24 hour intervals during these tests, the engine was audibly knock rated to determine its octane requirement. Cylinder pressure data was collected during knocking conditions to investigate the knocking characteristics of each cylinder, and deposit build-up effects on those statistics. Cylinder-to-cylinder variations in knock statistics were studied. Analysis of the data indicated that some 20 to 40 percent of cycles knock before the knock is audibly detected.
Technical Paper

Engine Experiments on the Effects of Design and Operational Parameters on Piston Secondary Motion and Piston Slap

1994-03-01
940695
Experiments were done to quantify the dynamic motion of the piston and oil-film during piston impact on the cylinder bore, commonly known as “piston slap.” Parameters measured include engine block vibration, piston-skirt to liner separation, oil-film thickness between the piston and liner, and other engine operating conditions. Experimental parametric studies were performed covering the following: engine operating parameters - spark timing, liner temperature, oil-film thickness, oil type, and engine speed; and engine design parameters - piston-skirt surface waviness, piston-skirt/cylinder-liner clearance, and wrist-pin offset. Two dynamic modes of piston-motion-induced vibration were observed, and effects of changes in engine operating and design parameters were investigated for both types of slap. It was evident that engine design parameters have stronger effects on piston slap intensity, with piston-skirt/liner clearance and wrist-pin offset being the dominant parameters.
Technical Paper

Effects of Piston-Ring Dynamics on Ring/Groove Wear and Oil Consumption in a Diesel Engine

1997-02-24
970835
The wear patterns of the rings and grooves of a diesel engine were analyzed by using a ring dynamics/gas flow model and a ring-pack oil film thickness model. The analysis focused primarily on the contact pressure distribution on the ring sides and grooves as well as on the contact location on the ring running surfaces. Analysis was performed for both new and worn ring/groove profiles. Calculated results are consistent with the measured wear patterns. The effects of groove tilt and static twist on the development of wear patterns on the ring sides, grooves, and ring running surfaces were studied. Ring flutter was observed from the calculation and its effect on oil transport was discussed. Up-scraping of the top ring was studied by considering ring dynamic twist and piston tilt. This work shows that the models used have potential for providing practical guidance to optimizing the ring pack and ring grooves to control wear and reduce oil consumption.
Technical Paper

Direct Observation of the Friction Reduction of Multigrade Lubricants

1991-02-01
910742
The oil film thickness distribution between the top ring and liner was observed using laser fluorescence (LF). Five different commercial lubricants, two single grades and three multigrades, were studied at two azimuthal, mid-stroke locations for five speed/load combinations in a small IDI diesel engine. Cavitation is never observed. The lubricant always separates tangent to the ring surface. The rheology of the oil flow under the ring is consistent with a non-Newtonian viscosity without elasticity. The difference between lubricant type (single or multigrade) corresponds to differences in inlet and outlet conditions. Using an analytical model together with the measured oil distributions, calculations demonstrate a difference in friction between single and multigrade lubricants. The multigrade lubricants have a lower friction coefficient, consistent with improvements in fuel economy reported in the literature.
X