Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Measurement of Fuel Liquid Film under the Different Injection Pressure

2013-10-15
2013-32-9167
The purpose of this study was to measure the distribution and volume of liquid film adhering to the walls after the injection of fuel by an injector of a port-injection engine using the laser induced fluorescence (LIF) method while changing the fuel pressure and the angle of injection, and to consider how adhesion can be reduced in order to decrease the exhaust emission of gasoline engine. Using a high-speed camera, we filmed the adhesion and evaporation of liquid film in time series. Perylene, used here as a fluorescence dye, was blended with a fuel comprising toluene and n-heptane, and the mixture was injected onto a solid surface using a port-injection injector. UVLED with a maximum output wavelength of 375 nm was used as the exciting light. To more accurately measure the volume of fuel adhesion, it was necessary to correct the unevenness of the light source.
Technical Paper

Light Emission and Absorption Spectroscopic Study of HCCI Combustion

2009-06-15
2009-01-1846
In this study, light emission and absorption spectroscopic measurement techniques were used to investigate the Homogeneous Charge Compression Ignition (HCCI) combustion process in detail, about which there have been many unclear points heretofore. The results made clear the formation behavior and wavelength bands of the chemical species produced during low-temperature reactions. Specifically, with a low level of residual gas, a light emission band was observed from a cool flame in a wavelength range of 370–470 nm. That is attributed to the light emission of formaldehyde (HCHO) produced in the cool-flame reactions. Additionally, it was found that these light emission spectra were no longer observable when residual gas was applied. The light emission spectra of the combustion flame thus indicated that residual gas has the effect of moderating cool-flame reactions.
X