Refine Your Search

Topic

Search Results

Technical Paper

VERTdePN Quality Test Procedures of DPF+SCR Systems

2014-04-01
2014-01-1579
The combined exhaust gas aftertreatment systems (DPF+SCR) are the most efficient way and the best available technology (BAT) to radically reduce the critical Diesel emission components particles (PM&NP) and nitric oxides (NOx). SCR (selective catalytic reduction) is regarded as the most efficient deNOx-system, diesel particle filters are most efficient for soot abatement. Today, several suppliers offer combined systems for retrofitting of HD vehicles. Quality standards for those quite complex systems and especially for retrofit systems are needed to enable decisions of several authorities and to estimate the potentials of improvements of the air quality in highly populated agglomerations. The present paper informs about the VERTdePN *) quality test procedures, which were developed in an international network project with the same name 2007-2011 (VERT … Verification of Emission Reduction Technologies; dePN … decontamination, disposal of PM / NP and of NOx).
Technical Paper

Testing of SCR-Systems on HD-Vehicles-TeVeNOx

2014-04-01
2014-01-1569
The selective catalytic reduction SCR is extensively used for NOx reduction of recent HD-vehicles. There are some manufacturers and some applications of SCR as retrofit systems (mostly for the low emission zones LEZ and in combination with a DPF). In charge of Swiss authorities AFHB investigated several SCR-systems, or (DPF+SCR)-systems on HD-vehicles and proposed a simplified quality test procedure of those systems. This procedure can especially be useful for the admission of retrofit systems but it can also be helpful for the quality check of OEM-systems. The project name was TeVeNOx - Testing of Vehicles with NOx reduction systems. In the present paper the test procedures will be described and some specific results will be discussed.
Technical Paper

Research on Particle Emissions of Modern 2-Stroke Scooters

2006-04-03
2006-01-1078
Limited and nonlimited emissions of scooters were analysed during several annual research programs of the Swiss Agency of Environment Forests and Landscape (SAEFL, BUWAL)*). Small scooters, which are very much used in the congested centers of several cities are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of particle emissions of different 2-stroke scooters with direct injection and with carburetor were performed. The nanoparticulate emissions with different lube oils and fuels were measured by means of SMPS, (CPC) and NanoMet *). Also the particle mass emission (PM) was measured with the same method as for Diesel engines. Extensive analyses of PM-residuum for PAH & SOF/INSOF, as well as for VOC were carried out in an international project network.
Journal Article

Research on Emissions and Engine Lube Oil Deterioration of Diesel Engines with BioFuels (RME)

2011-04-12
2011-01-1302
In the diesel sector the fatty acid methyl esters (FAME's) - in Europe mostly RME (rapeseed methyl ester) and in US mostly SME (soja oil methyl ester) - are used as a various share, % volume blends with the diesel fuel (B5, B7, B10, B20, Bxx). The present joint project focuses on RME being the most important representative of the biofuels of 1st generation in Europe. The influences of RME blend fuels on emissions and on lube oil deterioration are emphasized. Emissions were investigated on a modern engine with exhaust gas aftertreatment devices like SCR and (DPF+ SCR). Beside the legally limited exhaust emission components some non-legislated like NO₂, N₂O, NH₃ and nanoparticles were measured at stationary and dynamic engine operation.
Technical Paper

Particle Emissions of Modern Handheld Machines

2014-11-11
2014-32-0036
The progressing exhaust gas legislation for on- and off-road vehicles includes gradually the nanoparticle count limits. The invisible nanoparticles from different emission sources penetrate like a gas into the living organisms and may cause several health hazards. The present paper shows some results of a modern chain saw with & without oxidation catalyst, with Alkylate fuel and with different lube oils. The measurements focused specially on particulate emissions. Particulates were analysed by means of gravimetry (PM) and granulometry SMPS (PN). In this way the reduction potentials with application of the best materials (fuel, lube oil, ox-cat.) were indicated. It has been shown that the particle mass (PM) and the particle numbers (PN), which both consisting almost exclusively of unburned lube-oil, can attain quite high values, but can be influenced by the lube oil quality and can be considerably reduced with an oxidation catalyst.
Technical Paper

Metal-Oxide Particles in Combustion Engine Exhaust

2010-04-12
2010-01-0792
Concern for engine particle emission led to EC regulations of the number of solid particles emitted by LDV and HDV. However, all conventional piston-driven combustion engines emit metal oxide particles of which only little is known. The main sources are abrasion between piston ring and cylinder, abrasion of bearing, cams and valves, catalyst coatings, metal-organic lubrication oil additives, and fuel additives. While abrasion usually generates particles in the μm range, high concentrations of nanosize metal oxide particles are also observed, probably resulting from nucleation processes during combustion. In general, metal oxides, especially from transition metals, have high surface reactivity and can therefore be very toxic, especially nanosize particles, which evidently provide a high specific bioactive surface and are suspected to penetrate into the organism. Hence, these particles must be scrutinized for quantity, size distribution and composition.
Technical Paper

Metal Oxide Particle Emissions from Diesel and Petrol Engines

2012-04-16
2012-01-0841
All internal combustion piston engines emit solid nanoparticles. Some are soot particles resulting from incomplete combustion of fuels, or lube oil. Some particles are metal compounds, most probably metal oxides. A major source of metal compound particles is engine abrasion. The lube oil transports these abraded particles into the combustion zone. There they are partially vaporized and ultrafine oxide particles formed through nucleation [1]. Other sources are the metallic additives to the lube oil, metallic additives in the fuel, and debris from the catalytic coatings in the exhaust-gas emission control devices. The formation process results in extremely fine particles, typically smaller than 50 nm. Thus they intrude through the alveolar membranes directly into the human organism. The consequent health risk necessitates a careful investigation of these emissions and effective curtailment.
Technical Paper

Investigations of the Gas Injection System on a HD-CNG-Engine

2003-03-03
2003-01-0625
1 In the present work investigations of a 7.8 liter-TC-IC-IVECO-CNG engine were performed with single point (SPI) *) and with multipoint (MPI) gas injection systems. Three types of MPI injectors available on the market were compared for stationary and transient engine operation. There are several advantages of MPI e.g. better possibility to equalize the air-fuel-ratio of the cylinders, optimization of the gas injection timing and of the gas pressure for different operating conditions. With different injector types there are different optimum injection timings, due to different injection durations, but at the optimum conditions there is little difference in the combustion quality. The injectors with higher flow rate can cause more λ-excursions in the dynamic response and with sudden changes of the gas pressure.
Technical Paper

Investigations of NO2 in Legal Test Procedure for Diesel Passenger Cars

2015-09-06
2015-24-2510
As a result of increased use of catalytic exhaust aftertreatment systems of vehicles and the low-sulfur Diesel fuels there is an increasing share of nitrogen dioxide NO2 in the ambient air of several cities. This is in spite of lowering the summary nitric oxides NOx emissions from vehicles. NO2 is much more toxic than nitrogen monoxide NO and it will be specially considered in the next legal testing procedures. There are doubts about the accuracy of analyzing the reactive substances from diluted gas and this project has the objective to show how NO2 is changing as it travels down through the exhaust- and the CVS systems. For legal measurements of NO2 a WLTP-DTP subgroup (Worldwide Light Duty Test Procedures - Diesel Test Procedures) proposed different combinations of NOx-analyzers and analysis of NO and NOx. Some of these set-ups were tested in this work.
Technical Paper

Investigations of Changes of the 2-Stroke Scooters Nanoparticles in the Exhaust- and CVS-System

2013-09-08
2013-24-0178
Nanoparticle emissions of two 2-stroke scooters were investigated along the exhaust and the CVS (Constant Volume Sampling) systems. Two configurations were tested: regular full-flow dilution configuration (denoted as “closed”) and also a modified sampling configuration (denoted as “open”). The scooters represent two distinct modern technologies. One scooter had direct injection TSDI*) (Two-Stroke Direct Injection). The other had a carburettor. Depending on the technology, the scooters produce different kind of aerosols (state-of-oxidation and SOF content). Moreover, the scooters were operated with and without oxidation catalyst. The tests were performed at two constant vehicular speeds (20 km/h and 40 km/h). The measuring procedures are those established during the previous research of the Swiss Scooter Network. The nanoparticulate emissions were measured using SMPS (Scanning Mobility Particle Sizer) and DC (Diffusion Charging) sensors.
Technical Paper

Influences of Different Exhaust Filter Configurations on Emissions of a 2-Stroke Scooter Peugeot TSDI

2011-09-11
2011-24-0203
Exhaust emissions measurements of a small 2-S Scooter Peugeot TSDI*), 50cc with different particle filters have been performed in this present work according to the measuring procedures, which were established in the previous research in the Swiss Scooter Network, [1, 2, 3, 4, 5, 6, 7, 8, 9]. The investigated particle filtration materials were supplied from different manufacturers as samples without specifications and they were applied by the research laboratory in a special muffler able to be taken apart. The investigated scooter represented a modern (2002) 2-stroke technology with direct injection, with oxidation catalyst and with injection of the lube oil to the intake air. Since there is a special concern about the particle emissions of the small engines, the particle mass and nanoparticle measurements were systematically carried out. The nanoparticulate emissions were measured by means of SMPS (CPC) and NanoMet*).
Technical Paper

Influences of Butanol Blends on Combustion and Emissions of a Small SI Engine

2018-10-30
2018-32-0058
In the general efforts to replace the fossil fuels in transportation by renewable fuels the bioalcohols are an important alternative. The global share of Bioethanol used for transportation is continuously increasing. Butanol, a four-carbon alcohol, is considered in the last years as an interesting alternative fuel, both for Diesel and for Gasoline application. Its advantages for engine operation are: good miscibility with gasoline and diesel fuels, higher calorific value than Ethanol, lower hygroscopicity, lower corrosivity and possibility of replacing aviation fuels. In the present work research with different nButanol portions in gasoline (BuXX)* was performed on the 2-cylinder SI engine with variations of several parameters on engine dynamometer. At different steady state operating points were varied: spark timing (αz), air excess factor (λ) and EGR-rate. Furthermore, the conversion rates and light-off of a 3-way-catalyst were investigated.
Technical Paper

HORIZON Europe Project AeroSolfd: GPF-Retrofit for Cleaner Urban Mobility

2023-08-28
2023-24-0114
Ultrafine particles, in particular solid sub-100 nm particles pose high risks to human health due to their high lung deposition efficiency, translocation to all organs including the brain and their harmful chemical composition; due to dense traffic, the population in urban environments is exposed to high concentrations of those toxic air contaminants, despite these facts, they are still widely neglected. Therefore, the EU-Commission set up a program for clean and competitive solutions for different problem areas which are regarded to be hotspots of such particles. HORIZON AeroSolfd is an EU project, co-funded by Switzerland that will deliver affordable, adaptable, and sustainable retrofit solutions to reduce exhaust tailpipe emissions from petrol engines, brake emissions and pollution in semi-closed environments.
Technical Paper

Experiences from Nanoparticle Research on Four Gasoline Cars

2015-04-14
2015-01-1079
The invisible nanoparticles (NP)*) from combustion processes penetrate easily into the human body through the respiratory and olfactory pathways and carry numerous harmful health effects potentials. NP count concentrations are limited in EU for Diesel passenger cars since 2013 and for gasoline cars with direct injection (GDI) since 2014. The limit for GDI was temporary extended to 6 × 1012 #/km, (regulation No. 459/2012/EU). Nuclei of metals as well as organics are suspected to significantly contribute especially to the ultrafine particle size fractions, and thus to the particle number concentration. In the project GasOMeP (Gasoline Organic & Metal Particulates) metal-nanoparticles (including sub 20nm) from gasoline cars are investigated for different engine technologies. In the present paper some results of investigations of nanoparticles from four gasoline cars - an older one with MPI and three newer with DI - are represented.
Technical Paper

Emissions of small 2S-SI-Engine for Handheld Machinery-Nanoparticulates & Particulate Matter

2001-12-01
2001-01-1830
1 Small off-road 2-stroke SI-engines have very high pollutant emissions. The Swiss environmental protection agency (BUWAL) investigates the state of the technology and emissions with the scope to show the potential of improvements by means of the best available technology (BAT) and to motivate the consumers to use the more sophisticated equipment and cleaner fuels to protect their health and the environment. In the present work emission measurements of chainsaws were performed with a special concern of particulate emissions. Particulates were analysed by means of: gravimetry, SMPS, NanoMet and differential analysis of filter residue. The varied conditions were: A/F-ratio, lube-oil content and the fuel quality. It has been shown, that the particulate mass and the nanoparticle numbers, which both consisting almost exclusively of unburned lube-oil, attain very high values. They are strongly influenced by the mixture tuning and by the lube-oil content.
Technical Paper

Diesel Emission with DPF+SCR in VERTdePN - Testing & Potentials

2011-04-12
2011-01-1139
The most efficient way and the best available technology (BAT) to radically reduce the critical diesel emission components particles (PM&NP) and nitric oxides (NOx) are combined exhaust gas aftertreatment systems (DPF+SCR). SCR (selective catalytic reduction) is regarded as the most efficient deNOx-system, diesel particle filters are most efficient for soot abatement. Today, several suppliers offer combined systems for retrofitting of HD vehicles. The presented results are part of the work in the international network project VERT *) dePN (de-activation, de-contamination, disposal of particles and NOx), which has the objectives to establish test procedures and quality standards and to introduce the SCR-, or combined DPF+SCR-systems in the VERT verification procedure.
Technical Paper

Considerations of Periodical Technical Inspection of Vehicles with deNOx Systems

2019-04-02
2019-01-0744
An independent periodical technical inspection (PTI)*) of vehicles is proposed in the last time as a better prevention against increased emissions of the fleet. Several projects focused on the Diesel vehicles (HD & LD) and on the functionality of the exhaust aftertreatment systems as a key element for lowering emissions of a vehicle or machine. The present paper summarizes the results obtained on 3 modern passenger cars Euro 6b (with EGR, DOC, DPF & SCR) during load jumps, representing the heat-up or cool-down behaviour of the exhaust system. The portable devices for PTI were tested together with the stationary measuring systems of the engine laboratory. In the second part of the report, the present knowledge and proposals of supplementary test procedures (like IUC or PTI) were shortly described.
Technical Paper

Comparative Studies of Particles Deposited in Diesel Particulate Filters Operating with Biofuel, Diesel Fuel and Fuel Blends

2011-09-11
2011-24-0102
Macroscopic studies and scanning electron microscope (SEM), as well as transmission electron microscope (TEM) research were carried out to investigate the nature and properties of particulate matter (PM) deposited in three diesel particulate filters (DPFs) operating with different fuels: 100% rapeseed methyl ester (RME100), a blend of 20% RME and 80% diesel (RME20), as well as 100% diesel (RME0). The DPFs were catalytically coated with V₂O₅/TiO₂. The PM deposits were either extracted from sectioned DPFs or studied "in situ," as deposited. In the RME100-DPF, the lowest soot and highest ash depositions are found. The higher amount of ash in RME100-DPF, as well as the higher participation of the element Ca in the ash from this filter, indicates that in addition to lubricating oil, the RME fuel contributes also to ash formation. Ash is found accumulating in the plugged inlet channels only in RME100 and as a few tens of μm-thick layer on the channel walls of all three filters.
Technical Paper

Combinations of Technical Measures for Reduction of Particle Emissions & Toxicity of 2-S Scooters

2009-04-20
2009-01-0689
2- and 3-wheelers with 2-S propulsion are still a very serious source of air pollution worldwide in many urban areas. Therefore, every effort to reduce the emissions of those vehicles is an important contribution to improve the air quality. In the present work detailed investigations of regulated emissions and of particle emissions of 2-stroke scooters with direct injection and with carburator were performed. To demonstrate the emission reduction potentials some possibilities of emission improvements were grouped into steps. These technical measures were: ○ Higher tier lube oils ○ Lower oil dosing ○ Active oxidation catalyst ○ Supplementary filtration & oxidation devise (WFC) **) ○ Special fuel. Particle mass and nanoparticles (number), which are amply present in 2-stroke exhaust gas and which contribute strongly to the toxicity level are still unlimited by the international exhaust gas legislation. They were extensively investigated in the present project series.
Technical Paper

Catalyst Aging and Effects on Particle Emissions of 2-Stroke Scooters

2008-04-14
2008-01-0455
An active oxidation catalyst is an efficient measure to reduce not only gaseous components (CO, HC), but also particle emissions (mostly oil condensates) of a small 2-stroke engine with lost oil lubrication. Since the 2- and 3-wheelers with 2-stroke propulsion are still a very serious source of air pollution worldwide in many urban areas, it is important to have a look on some consequences of an improperly working catalyst. The present paper shows some results of user-oriented aging of catalyst on the vehicle and results of limited emissions and unlimited (nano)particles during the catalysts screening tests. The works are a part of an international scooter network project, which was performed (2004 to 2007) in the Laboratories for IC-Engines & Exhaust Emission Control of the University of Applied Sciences, Biel, Switzerland with main support of the Swiss Federal Office of Environment (BAFU), Swiss Petrol Union (EV) and Swiss Lubes (VSS).
X