Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Smoothing HCCI Heat Release with Vaporization-Cooling-Induced Thermal Stratification using Ethanol

2011-08-30
2011-01-1760
Ethanol and ethanol/gasoline blends are being widely considered as alternative fuels for light-duty automotive applications. At the same time, HCCI combustion has the potential to provide high efficiency and ultra-low exhaust emissions. However, the application of HCCI is typically limited to low and moderate loads because of unacceptably high heat-release rates (HRR) at higher fueling rates. This work investigates the potential of lowering the HCCI HRR at high loads by using partial fuel stratification to increase the in-cylinder thermal stratification. This strategy is based on ethanol's high heat of vaporization combined with its true single-stage ignition characteristics. Using partial fuel stratification, the strong fuel-vaporization cooling produces thermal stratification due to variations in the amount of fuel vaporization in different parts of the combustion chamber.
Journal Article

Improving Efficiency and Using E10 for Higher Loads in Boosted HCCI Engines

2012-04-16
2012-01-1107
This study systematically investigates the effects of various engine operating parameters on the thermal efficiency of a boosted HCCI engine, and the potential of E10 to extend the high-load limit beyond that obtained with conventional gasoline. Understanding how these parameters can be adjusted and the trade-offs involved is critical for optimizing engine operation and for determining the highest efficiencies for a given engine geometry. Data were acquired in a 0.98 liter, single-cylinder HCCI research engine with a compression-ratio of 14:1, and the engine facility was configured to allow precise control over the relevant operating parameters. The study focuses on boosted operation with intake pressures (Pin) ≥ 2 bar, but some data for Pin < 2 bar are also presented. Two fuels are considered: 1) an 87-octane gasoline, and 2) E10 (10% ethanol in this same gasoline) which has a lower autoignition reactivity for boosted operation.
Journal Article

Ethanol Autoignition Characteristics and HCCI Performance for Wide Ranges of Engine Speed, Load and Boost

2010-04-12
2010-01-0338
The characteristics of ethanol autoignition and the associated HCCI performance are examined in this work. The experiments were conducted over wide ranges of engine speed, load and intake boost pressure (Piⁿ) in a single-cylinder HCCI research engine (0.98 liters) with a CR = 14 piston. The data show that pure ethanol is a true single-stage ignition fuel. It does not exhibit low-temperature heat release (LTHR), not even for boosted operation. This makes ethanol uniquely different from conventional distillate fuels and offers several benefits: a) The intake temperature (Tiⁿ) does not have to be adjusted much with changes of engine speed, load and intake boost pressure. b) High Piⁿ can be tolerated without running out of control authority because of an excessively low Tiⁿ requirement. However, by maintaining true single-stage ignition characteristics, ethanol also shows a relatively low temperature-rise rate just prior to its hot ignition point.
Journal Article

Effects of Gasoline Reactivity and Ethanol Content on Boosted, Premixed and Partially Stratified Low-Temperature Gasoline Combustion (LTGC)

2015-04-14
2015-01-0813
Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel ϕ- sensitive so that partial fuel stratification (PFS) can be applied for higher loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion.
Journal Article

Detailed Kinetic Modeling of HCCI Combustion with Isopentanol

2011-09-11
2011-24-0023
Isopentanol is an advanced biofuel that can be produced by micro-organisms through genetically engineered metabolic pathways. Compared to the more frequently studied ethanol, isopentanol's molecular structure has a longer carbon chain and includes a methyl branch. Its volumetric energy density is over 30% higher than ethanol, and it is less hygroscopic. Some fundamental combustion properties of isopentanol in an HCCI engine have been characterized in a recent study by Yang and Dec (SAE 2010-01-2164). They found that for typical HCCI operating conditions, isopentanol lacks two-stage ignition properties, yet it has a higher HCCI reactivity than gasoline. The amount of intermediate temperature heat release (ITHR) is an important fuel property, and having sufficient ITHR is critical for HCCI operation without knock at high loads using intake-pressure boosting. Isopentanol shows considerable ITHR, and the amount of ITHR increases with boost, similar to gasoline.
Journal Article

Characteristics of Isopentanol as a Fuel for HCCI Engines

2010-10-25
2010-01-2164
Long chain alcohols possess major advantages over the currently used ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. The rapid developments in biofuel technology have made it possible to produce C 4 -C 5 alcohols cost effectively. These higher alcohols could significantly expand the biofuel content and potentially substitute ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C 5 alcohol, isopentanol, as a fuel for HCCI engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. Results are presented in comparison with gasoline or ethanol data previously reported. For a given combustion phasing, isopentanol requires lower intake temperatures than gasoline or ethanol at all tested speeds, indicating a higher HCCI reactivity.
Journal Article

Bio-Ketones: Autoignition Characteristics and Their Potential as Fuels for HCCI Engines

2013-10-14
2013-01-2627
This paper studies autoignition characteristics and HCCI engine combustion of ketone fuels, which are important constituents of recently discovered fungi-derived biofuels. Two ketone compounds, 2,4-dimethyl-3-pentanone (DMPN) and cyclopentanone (CPN), are systematically investigated in the Sandia HCCI engine, and the results are compared with conventional gasoline and neat ethanol. It is found that CPN has the lowest autoignition reactivity of all the biofuels and gasoline blends tested in this HCCI engine. The combustion timing of CPN is also the most sensitive to intake-temperature (Tin) variations, and it is almost insensitive to intake-pressure (Pin) variations. These characteristics and the overall HCCI performance of CPN are similar to those of ethanol. In contrast, DMPN shows multi-faceted autoignition characteristics. On the one hand, DMPN has strong temperature-sensitivity, even at boosted Pin, which is similar to the low-reactivity ethanol and CPN.
X