Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Visualization of Mixture Preparation in a Port-Fuel Injection Engine During Engine Warm-up

1995-10-01
952481
The fuel injection process in the port of a firing 4-valve SI engine at part load and 25°C head temperature was observed by a high speed video camera. Fuel was injected when the valve was closed. The reverse blow-down flow when the intake valve opens has been identified as an important factor in the mixture preparation process because it not only alters the thermal environment of the intake port, but also strip-atomizes the liquid film at the vicinity of the intake valve and carries the droplets away from the engine. In a series of “fuel-on” experiments, the fuel injected in the current cycle was observed to influence the fuel delivery to the engine in the subsequent cycles.
Journal Article

The Measurement of Penetration Length of Diesel Spray by Using Background Oriented Schlieren Technique

2011-04-12
2011-01-0684
The measurement of spray penetration length is one of crucial tasks for understanding the characteristics of diesel spray and combustion. For this reason, many researchers have devised various measurement techniques, including Mie scattering, schlieren photography, and laser induced exciplex fluorescence (LIEF). However, the requirements of expensive lasers, complicated optics, delicate setups, and tracers that affect fuel characteristics have been disadvantages of previous techniques. In this study, the background-oriented schlieren (BOS) technique is employed to measure the vapor penetration length of diesel spray for the first time. The BOS technique has a number of benefits over the previous techniques because of its quantitative, non-intrusive nature which does not require lasers, mirrors, optical filters, or fuel tracers.
Technical Paper

The Effect of Liquid Fuel on the Cylinder Liner on Engine-Out Hydrocarbon Emissions in SI Engines

2001-09-24
2001-01-3489
The liquid fuel film on the cylinder liner is believed to be a major source of engine-out hydrocarbon emissions in SI engines, especially during cold start and warm-up period. Quantifying the liquid fuel film on the cylinder liner is essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to quantify liquid fuel film on the quartz cylinder liner in an SI engine test rig. In addition, comparing visualization results with the trend of hydrocarbon emissions in this engine, the effect of cylinder wall-wetting during a simulated cold start and warmed-up condition was investigated with the engine experiment. The visualization was based on laser-induced fluorescence and total reflection. Using a quartz liner and a special lens, only the liquid fuel on the liner was visualized.
Technical Paper

Study of LES Quality Criteria in a Motored Internal Combustion Engine

2017-03-28
2017-01-0549
In recent years, Large-Eddy Simulation (LES) is spotlighted as an engineering tool and severe research efforts are carried out on its applicability to Internal Combustion Engines (ICEs). However, there is a general lack of definitive conclusions on LES quality criteria for ICE. This paper focuses on the application of LES quality criteria to ICE and to their correlation, in order to draw a solid background on future LES quality assessments for ICE. In this paper, TCC-III single-cylinder optical engine from University of Michigan is investigated and the analysis is conducted under motored condition. LES quality is mainly affected by grid size and type, sub-grid scale (SGS) model, numeric schemes. In this study, the same grid size and type are used in order to focus on the effect on LES quality of SGS models and blending factors of numeric scheme only.
Technical Paper

Investigation of Sub-Grid Model Effect on the Accuracy of In-Cylinder LES of the TCC Engine under Motored Conditions

2017-09-04
2017-24-0040
The increasing interest in the application of Large Eddy Simulation (LES) to Internal Combustion Engines (hereafter ICEs) flows is motivated by its capability to capture spatial and temporal evolution of turbulent flow structures. Furthermore, LES is universally recognized as capable of simulating highly unsteady and random phenomena driving cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Several quality criteria were proposed in the recent past to estimate LES uncertainty: however, definitive conclusions on LES quality criteria for ICEs are still far to be found. This paper describes the application of LES quality criteria to the TCC-III single-cylinder optical engine from University of Michigan and GM Global R&D; the analyses are carried out under motored condition.
X