Refine Your Search

Topic

Search Results

Technical Paper

Upper-Extremity Injuries From Steering Wheel Airbag Deployments

1997-02-24
970493
In a review of 540 crashes in which the steering-wheel airbag deployed, 38% of the drivers sustained some level of upper extremity injury. The majority of these were AIS-1 injuries including abrasions, contusions and small lacerations. In 18 crashes the drivers sustained AIS-2 or-3 level upper extremity injuries, including fractures of the radius and/or ulna, or of the metacarpal bones, all related to airbag deployments. It was determined that six drivers sustained the fracture(s) directly from the deploying airbag or the airbag module cover. The remaining 12 drivers had fractures from the extremity being flung into interior vehicle structures, usually the instrument panel. Most drivers were taller than 170 cm and, of the 18 drivers, 10 were males.
Technical Paper

The Tolerance of the Human Hip to Dynamic Knee Loading

2002-11-11
2002-22-0011
Based on an analysis of the National Automotive Sampling System (NASS) database from calendar years 1995-2000, over 30,000 fractures and dislocations of the knee-thigh-hip (KTH) complex occur in frontal motor-vehicle crashes each year in the United States. This analysis also shows that the risk of hip injury is generally higher than the risks of knee and thigh injuries in frontal crashes, that hip injuries are occurring to adult occupants of all ages, and that most hip injuries occur at crash severities that are equal to, or less than, those used in FMVSS 208 and NCAP testing. Because previous biomechanical research produced mostly knee or distal femur injuries, and because knee and femur injuries were frequently documented in early crash investigation data, the femur has traditionally been viewed as the weakest part of the KTH complex.
Technical Paper

Some Effects of Lumbar Support Contour on Driver Seated Posture

1995-02-01
950141
An appropriately contoured lumbar support is widely regarded as an essential component of a comfortable auto seat. A frequently stated objective for a lumbar support is to maintain the sitter's lumbar spine in a slightly extended, or lordotic, posture. Although sitters have been observed to sit with substantial lordosis in some short-duration testing, long-term postural interaction with a lumbar support has not been documented quantitatively in the automotive environment. A laboratory study was conducted to investigate driver posture with three seatback contours. Subjects† from four anthropometric groups operated an interactive laboratory driving simulator for one-hour trials. Posture data were collected by means of a sonic digitizing system. The data identify driver-selected postures over time for three lumbar support contours. An increase of 25 mm in the lumbar support prominence from a flat contour did not substantially change lumbar spine posture.
Technical Paper

Simulation of Head/Neck Impact Responses for Helmeted and Unhelmeted Motorcyclists

1981-10-01
811029
The purpose of this study was to assess, by use of computer simulations, the effectiveness of motorcycle helmets in reducing head and neck injuries in motorcyclist impacts. The computer model used was the MVMA Two-Dimensional Crash Victim Simulator. The study investigated a wide variety of impact conditions in order to establish a broad overall view of the effectiveness of helmets. It was found that helmet use invariably reduces dynamic responses which have a role in producing head injury and, in addition, almost always reduces the severity of neck response as well. For no configuration or condition does the helmet greatly increase the likelihood of neck injury. Thus, these simulations of a wide spectrum of motorcyclist impacts provide further evidence that helmet use significantly reduces the likelihood and severity of both head and neck injuries. This study was supported by the Insurance Institute for Highway Safety.
Technical Paper

Simulation Analysis of Head and Neck Dynamic Response

1984-10-01
841668
The objectives of this study are to quantify the biomechanical properties of the human neck which govern head and neck dynamic response and to establish the mechanisms responsible for primary aspects of response. Computer simulations with the MVMA 2-D and VOM 3-D occupant dynamics models were performed using head and neck sled input response data from human subjects at the Naval Biodynamics Laboratory for input and comparison. Predicted dynamic response data and preliminary values for biomechanical parameters in a three-dimensional head/neck model capable of accurately simulating response for −X, +Y, and −X+Y sled acceleration vectors are presented. The established analytical model should accurately predict head and neck responses in simulations of real-world automobile crashes where direct head impact is not involved. Additionally, the model can be used to assist in development of a design plan for the neck of advanced anthropomorphic test dummies.
Technical Paper

Response and Tolerance of Female and/or Elderly PMHS to Lateral Impact

2014-11-10
2014-22-0015
Eight whole fresh-frozen cadavers (6 female, 2 male) that were elderly and/or female were laterally impacted using UMTRI's dual-sled side-impact test facility. Cadavers were not excluded on the basis of old age or bone diseases that affect tolerance. A thinly padded, multi-segment impactor was used that independently measured force histories applied to the shoulder, thorax, abdomen, greater trochanter, iliac wing, and femur of each PMHS. Impactor plates were adjusted vertically and laterally toward the subject so that contact with body regions occurred simultaneously and so that each segment contacted the same region on every subject. This configuration minimized the effects of body shape on load sharing between regions. Prior to all tests, cadavers were CT scanned to check for pre-existing skeletal injuries. Cadavers were excluded if they had pre-existing rib fractures or had undergone CPR.
Technical Paper

Predicting the Effects of Muscle Activation on Knee, Thigh, and Hip Injuries in Frontal Crashes Using a Finite-Element Model with Muscle Forces from Subject Testing and Musculoskeletal Modeling

2009-11-02
2009-22-0011
In a previous study, the authors reported on the development of a finite-element model of the midsize male pelvis and lower extremities with lower-extremity musculature that was validated using PMHS knee-impact response data. Knee-impact simulations with this model were performed using forces from four muscles in the lower extremities associated with two-foot bracing reported in the literature to provide preliminary estimates of the effects of lower-extremity muscle activation on knee-thigh-hip injury potential in frontal impacts. The current study addresses a major limitation of these preliminary simulations by using the AnyBody three-dimensional musculoskeletal model to estimate muscle forces produced in 35 muscles in each lower extremity during emergency one-foot braking.
Technical Paper

PMHS Impact Response in 3 m/s and 8 m/s Nearside Impacts with Abdomen Offset

2013-11-11
2013-22-0015
Lateral impact tests were performed using seven male post-mortem human subjects (PMHS) to characterize the force-deflection response of contacted body regions, including the lower abdomen. All tests were performed using a dual-sled, side-impact test facility. A segmented impactor was mounted on a sled that was pneumatically accelerated into a second, initially stationary sled on which a subject was seated facing perpendicular to the direction of impact. Positions of impactor segments were adjusted for each subject so that forces applied to different anatomic regions, including thorax, abdomen, greater trochanter, iliac wing, and thigh, could be independently measured on each PMHS. The impactor contact surfaces were located in the same vertical plane, except that the abdomen plate was offset 5.1 cm towards the subject.
Technical Paper

New Concepts in Vehicle Interior Design Using ASPECT

1999-03-01
1999-01-0967
The ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program developed a new physical manikin for seat measurement and new techniques for integrating the seat measurements into the vehicle design process. This paper presents an overview of new concepts in vehicle interior design that have resulted from the ASPECT program and other studies of vehicle occupant posture and position conducted at UMTRI. The new methods result from an integration of revised versions of the SAE seat position and eyellipse models with the new tools developed in ASPECT. Measures of seat and vehicle interior geometry are input to statistical posture and position prediction tools that can be applied to any specified user population or individual occupant anthropometry.
Technical Paper

Laboratory Investigations and Mathematical Modeling of Airbag-Induced Skin Burns

1994-11-01
942217
Although driver-side airbag systems provide protection against serious head and chest injuries in frontal impacts, injuries produced by the airbag itself have also been reported. Most of these injuries are relatively minor, and consist primarily of skin abrasions and burns. Previous investigations have addressed the mechanisms of airbag-induced skin abrasion. In the current research, laboratory studies related to the potential for thermal burns due to high-temperature airbag exhaust gas were conducted. A laboratory apparatus was constructed to produce a 10-mm-diameter jet of hot air that was directed onto the leg skin of human volunteers in time-controlled pulses. Skin burns were produced in 70 of 183 exposures conducted using air temperatures ranging from 350 to 550°C, air velocities from 50 to 90 m/s, and exposure durations from 50 to 300 ms.
Technical Paper

Knee, Thigh and Hip Injury Patterns for Drivers and Right Front Passengers in Frontal Impacts

2003-03-03
2003-01-0164
Late model passenger cars and light trucks incorporate occupant protection systems with airbags and knee restraints. Knee restraints have been designed principally to meet the unbelted portions of FMVSS 208 that require femur load limits of 10-kN to be met in barrier crashes up to 30 mph, +/- 30 degrees utilizing the 50% male Anthropomorphic Test Device (ATD). In addition, knee restraints provide additional lower-torso restraint for belt-restrained occupants in higher-severity crashes. An analysis of frontal crashes in the University of Michigan Crash Injury Research and Engineering Network (UM CIREN) database was performed to determine the influence of vehicle, crash and occupant parameters on knee, thigh, and hip injuries. The data sample consists of drivers and right front passengers involved in frontal crashes who sustained significant injuries (Abbreviated Injury Scale [AIS] ≥ 3 or two or more AIS ≥ 2) to any body region.
Technical Paper

Interactions of Out-of-Position Small-Female Surrogates with a Depowered Driver Airbag

2008-11-03
2008-22-0008
The objectives of this study were to examine the response, repeatability, and injury predictive ability of the Hybrid III small-female dummy to static out-of-position (OOP) deployments using a depowered driver-side airbag. Five dummy tests were conducted in two OOP configurations by two different laboratories. The OOP configurations were nose-on-rim (NOR) and chest-on-bag (COB). Four cadaver tests were conducted using unembalmed small-female cadavers and the same airbags used in the dummy tests under similar OOP conditions. One cadaver test was designed to increase airbag loading of the face and neck (a forehead-on-rim, or FOR test). Comparison between the dummy tests of Lab 1 and of Lab 2 indicated the test conditions and results were repeatable. In the cadaver tests no skull fractures or neck injuries occurred. However, all four cadavers had multiple rib fractures.
Technical Paper

Impact Sled Test Evaluation of Restraint systems Used in Transportation of Handicapped Children

1979-02-01
790074
A series of 16 sled impact tests was conducted at the Highway Safety Research Institute sled facility to evaluate the effectiveness of restraint devices and systems currently being used to transport school-bus and wheelchair-seated handicapped children. A sled impact pulse of 20 m.p.h. and 16 G's was used for all tests. Eight tests involved wheelchairs in forward-facing and side-facing orientations for head-on and 33-degree oblique impacts. Another eight tests involved forward-facing bus seats for head-on and 33-degree oblique impacts. The results generally point out the ineffectiveness of many currently used devices and systems for protecting the child in a bus collision. In six of the eight bus seat tests the dummy's head struck the back of the bus seat in front. This was primarily because of a lack of upper-torso restraint.
Technical Paper

Factors Associated With Abdominal Injury in Frontal, Farside, and Nearside Crashes

2010-11-03
2010-22-0005
The NASS-CDS (1998-2008) and CIREN datasets were analyzed to identify factors contributing to abdominal injury in crash environments where belt use and airbag deployment are common. In frontal impacts, the percentage of occupants sustaining abdominal injury is three times higher for unbelted compared to belted front-row adult occupants (p≺0.0001) at both AIS2+ and AIS3+ injury levels. Airbag deployment does not substantially affect the percentage of occupants who sustain abdominal injuries in frontal impacts (p=0.6171), while belt use reduces the percentage of occupants sustaining abdominal injury in both nearside and farside crashes (p≺0.0001). Right-front passengers in right-side impacts have the highest risk (1.91%) of AIS 3+ abdominal injury (p=0.03). The percentage of occupants with AIS 3+ abdominal injuries does not vary with age for frontal, nearside, or farside impacts.
Technical Paper

Facial, Periorbital and Ocular Injuries Related to Steering-Wheel Airbag Deployments

1997-02-24
970490
To determine the frequency of facial injuries from steering-wheel airbag deployments, 540 consecutive steering-wheel airbag deployments, investigated by the University of Michigan Transportation Research Institute (UMTRI) personnel, were reviewed. About 1 in 3 drivers sustain an injury to the face. Injuries to the area surrounding the eye (periorbital) or to the eyeball (ocular) rarely occur. The frequencies of facial or ocular injuries are the same for belted and unbelted drivers. Drivers of short stature had a higher frequency of facial injury. Females sustained ocular injuries more frequently than males. Untethered airbags were not overly involved in drivers with an ocular injury. No specific make or model car were overly represented in the ocular injury cases.
Technical Paper

Estimating Infant Head Injury Criteria and Impact Response Using Crash Reconstruction and Finite Element Modeling

2002-11-11
2002-22-0009
A combination of finite element modeling and sled test reconstruction of real-world infant head injury scenarios has been used to investigate infant head impact response and tolerance to skull fracture. Studying the role of cranial sutures on infant skull response was of particular interest. The specific injury scenarios selected for reconstruction involved infants in rear-facing child restraint systems (CRS) who sustained skull fractures and brain injuries from deploying passenger-side frontal airbags. Approximations of the loading conditions for three injury cases, as well as estimates of loading conditions not expected to result in head injury, were produced in the laboratory. A finite element model (FEM) of a six-month-old infant head was developed using available material properties and humanlike geometry. The infant head FEM was used to simulate different injury and no-injury loading conditions based on CRS response data from the reconstruction tests.
Technical Paper

Effects of Hip Posture on the Frontal Impact Tolerance of the Human Hip Joint

2003-10-27
2003-22-0002
… The pattern of left- and right-side hip injuries to front-seat occupants involved in offset and angled frontal crashes suggests that hip posture (i.e., the orientation of the femur relative to the pelvis) affects the fracture/dislocation tolerance of the hip joint to forces transmitted along the femur during knee-to-knee-bolster loading in frontal impacts. To investigate this hypothesis, dynamic hip tolerance tests were conducted on the left and right hips of 22 unembalmed cadavers. In these tests, the knee was dynamically loaded in the direction of the long axis of the femur and the pelvis was fixed to minimize inertial effects. Thirty-five successful hip tolerance tests were conducted. Twenty-five of these tests were performed with the hip oriented in a typical posture for a seated driver, or neutral posture, to provide a baseline measure of hip tolerance. The effects of hip posture on hip tolerance were quantified using a paired-comparison experimental design.
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
Technical Paper

Development of a Finite Element Model to Study the Effects of Muscle Forces on Knee-Thigh-Hip Injuries in Frontal Crashes

2008-11-03
2008-22-0018
A finite element (FE) model with knee-thigh-hip (KTH) and lower-extremity muscles has been developed to study the potential effects of muscle tension on KTH injuries due to knee bolster loadings in frontal crashes. This model was created by remeshing the MADYMO human lower-extremity FE model to account for regional differences in cortical bone thickness, trabecular bone, cortical bone with directionally dependent mechanical properties and Tsai-Wu failure criteria, and articular cartilage. The model includes 35 Hill-type muscles in each lower extremity with masses based on muscle volume. The skeletal response of the model was validated by simulating biomechanical tests without muscle tension, including cadaver skeletal segment impact tests documented in the literature as well as recent tests of seated whole cadavers that were impacted using knee-loading conditions similar to those produced in FMVSS 208 testing.
Technical Paper

Development of ATD Installation Procedures Based on Rear-Seat Occupant Postures

2005-11-09
2005-22-0018
The initial positioning of anthropomorphic test devices (ATDs) can influence the outcomes of crash tests. Current procedures for positioning ATDs in rear seats are not based on systematic studies of passenger postures. This paper compares the postures of three side-impact ATDs to the postures of 24 men and women in three vehicle rear seats and 16 laboratory conditions. When positioned using current procedures, the locations of the ES-2 and SID-HIII ATD heads are generally rearward of those observed with similar-size passengers. The SID-IIs head locations matched the expected locations of heads of passengers of similar size more closely. As the seat back angle was increased, people reclined less than the ATDs. Based on these findings, a new ATD positioning procedure for rear seats was developed. The primary objective of the new procedure is to place the ATD head in the location that is most likely for people of similar size.
X