Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

2017-09-04
2017-24-0062
Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
Technical Paper

Toward Predictive Combustion Modeling of CNG SI Engines in 1D Simulation Tools

2020-09-15
2020-01-2079
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional fuel to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

The Use of Vibrational Signals for On-Board Knock Diagnostics Supported by In-Cylinder Pressure Analyses

2014-11-11
2014-32-0063
In the present work, an Auto Regressive Moving Average (ARMA) model and a Discrete Wavelet Transform (DWT) are applied on vibrational signals, acquired by an accelerometer placed on the cylinder block of a Spark Ignition (SI) engine, for knock detection purposes. To the aim of tuning such procedures, the same analysis has been carried out by using the traditional MAPO (Maximum Amplitude of Pressure Oscillations) index and an Inverse Kinetic Model (IKM), both applied on the in-cylinder pressure signals. Vibrational and in-cylinder pressure signals have been collected on a four cylinder, four stroke engine, for different engine speeds, load conditions and spark advances. The results of the two vibrational based methods are compared and in depth discussed to the aim of highlighting the pros and cons of each methodology.
Technical Paper

Techniques for CO2 Emission Reduction over a WLTC. A Numerical Comparison of Increased Compression Ratio, Cooled EGR and Water Injection

2018-05-30
2018-37-0008
In this work, various techniques are numerically applied to a base engine - vehicle system to estimate their potential CO2 emission reduction. The reference thermal unit is a downsized turbocharged spark-ignition Variable Valve Actuation (VVA) engine, with a Compression Ratio (CR) of 10. In order to improve its fuel consumption, preserving the original full-load torque, various technologies are considered, including an increased CR, an external low-pressure cooled EGR, and a ported Water Injection (WI). The analyses are carried out by a 1D commercial software (GT-Power™), enhanced by refined user-models for the description of in-cylinder processes, namely turbulence, combustion, heat transfer and knock. The latter were validated with reference to the base engine architecture in previous activities. To minimize the Brake Specific Fuel Consumption (BSFC) all over the engine operating plane, the control parameters of the base and modified engines are calibrated based on PID controllers.
Journal Article

Strategies for Improving Fuel Consumption at Part-Load in a Downsized Turbocharged SI Engine: a Comparative Study

2014-04-01
2014-01-1064
It is commonly recognized that the paths for improving fuel consumption (BSFC) in a spark-ignition engine at part-load require more advanced valve actuation strategies, which largely affect the pumping work. Since several years, many different solutions have been proposed, characterized by different levels of complexity, effectiveness, and cost. Valve systems currently available on the market allow for variable phasing (VVT - Variable Valve Timing), and/or lift (VVA - Variable Valve Actuation). Usually VVT devices are applied on intake and exhaust camshafts, in the “phased” or “unphased” configuration, as well. VVA devices are instead commonly mounted on the intake camshaft. More recent VVA systems also allow for a double intake valve lift during a single engine cycle (multi-lift), or may include a small intake pre-lift during the exhaust stroke. The latter solutions may determine further BSFC reductions. Alternatively, an external-EGR circuit can be considered, as well.
Technical Paper

Steady and Unsteady Modeling of Turbocharger Compressors for Automotive Engines

2010-05-05
2010-01-1536
Turbocharging technique will play a fundamental role in the near future not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions both in Spark Ignition and Compression Ignition engines. To this end, one-dimensional (1D) modelling is usually employed to compute the engine-turbocharger matching, to select the boost level in different operating conditions and to estimate low end torque level and transient response. However, 1D modeling of a turbocharged engine requires the availability of the turbine and compressor characteristic maps. This leads to some typical drawbacks: performance maps of the turbocharger device are usually limited to a reduced number of rotational speeds, pressure ratios and mass flow rates.
Technical Paper

Split Injection in a GDI Engine Under Knock Conditions: An Experimental and Numerical Investigation

2015-09-06
2015-24-2432
Present work investigates both experimentally and numerically the benefits deriving from the use of split injections in increasing the engine power output and reducing the tendency to knock of a gasoline direct injection (GDI) engine. The here considered system is characterized by an optical access to the combustion chamber. Imaging in the UV-visible range is carried out by means of a high spatial and temporal resolution camera through an endoscopic system and a transparent window placed in the piston head. This last is modified to allow the view of the whole combustion chamber almost until the cylinder walls, to include the so-called eng-gas zones of the mixture, where undesired self-ignition may occur under some circumstances. Optical data are correlated to in-cylinder pressure oscillations on a cycle resolved basis.
Technical Paper

Simultaneous Shadowgraph/Mie Scattering Imaging of Liquid and Vapor Phases of Diesel Sprays and Validation of a Numerical Model

2014-10-13
2014-01-2744
Diesel sprays from an axially-disposed single-hole injector are studied under both non-vaporizing and vaporizing conditions in a constant-volume vessel. A hybrid shadowgraph/Mie-scattering imaging set-up is used to acquire the liquid and vapor phases of the fuel distribution in a near-simultaneous visualization mode by a high-speed camera (40,000 fps). A diesel injector with k0 factor is used, having the exit-hole diameter of 0.1 mm and the ratio L/d =10. The studies are performed at the injection pressures of 70, 120, and 180 MPa, 25.37 kg/m3 ambient gas density, at the environment temperature of 373, 453 and 900 K. The instantaneous tip penetration of the liquid and vapor phases is extracted from the collected images and processed by a properly assessed software, under the various operating conditions. The AVL FIRE™ code is also used to simulate the spray dynamics. The model is validated on the ground of the collected experimental data.
Technical Paper

Refinement of a 0D Turbulence Model to Predict Tumble and Turbulent Intensity in SI Engines. Part I: 3D Analyses

2018-04-03
2018-01-0850
Recently, a growing interest in the development of more accurate phenomenological turbulence models is observed, since this is a key pre-requisite to properly describe the burn rate in quasi-dimensional combustion models. The latter are increasingly utilized to predict engine performance in very different operating conditions, also including unconventional valve control strategies, such as EIVC or LIVC. Therefore, a reliable phenomenological turbulence model should be able to physically relate the actuated valve strategy to turbulence level during the engine cycle, with particular care in the angular phase when the combustion takes place.
Technical Paper

Reducing Fuel Consumption, Noxious Emissions and Radiated Noise by Selection of the Optimal Control Strategy of a Diesel Engine

2011-09-11
2011-24-0019
Despite the recent efforts devoted to develop alternative technologies, it is likely that the internal combustion engine will remain the dominant propulsion system for the next 30 years and beyond. Also as a consequence of more and more stringent emissions regulations established in the main industrialized countries, strongly demanded are methods and technologies able to enhance the internal combustion engines performance in terms of both efficiency and environmental impact. Present work focuses on the development of a numerical method for the optimization of the control strategy of a diesel engine equipped with a high pressure injection system, a variable geometry turbocharger and an EGR circuit. A preliminary experimental analysis is presented to characterize the considered six-cylinder engine under various speeds, loads and EGR ratios.
Technical Paper

Potentials of the Oversizing and H2-Supported Lean Combustion of a VVA SI Gasoline Engine Towards Efficiency Improvement

2021-09-05
2021-24-0007
In recent years, internal combustion engine (ICE) downsizing coupled with turbocharging was considered the most effective path to improve engine efficiency at low load, without penalizing rated power/torque performance at full load. On the other side, issues related to knocking combustion and excessive exhaust gas temperatures obliged adopting countermeasures that highly affect the efficiency, such as fuel enrichment and delayed combustion. Powertrain electrification allows operating the ICE mostly at medium/high loads, shifting design needs and constraints towards targeting high efficiency under those operating conditions. Conversely, engine efficiency at low loads becomes a less important issue. In this track, the aim of this work is the investigation of the potential of the oversizing of a small Variable Valve ActuationSpark Ignition gasoline engine towards efficiency increase and tailpipe emission reduction.
Journal Article

Numerical and Experimental Investigation of Fuel Effects on Knock Occurrence and Combustion Noise in a 2-Stroke Engine

2012-04-16
2012-01-0827
Knock occurrence is a widely recognized phenomenon to be controlled during the development and optimization of S.I. engines, since it bounds both compression ratio and spark advance, hence reducing the potential in gaining a lower fuel consumption. As a consequence, a clear understanding of the engine parameters affecting the onset of auto-ignition is mandatory for the engine setup. In view of the complexity of the phenomena, the use of combined experimental and numerical investigations is very promising. The paper reports such a combined activity, targeted at characterizing the combustion behavior of a small unit displacement two-stroke SI engine operated with either Gasoline or Natural Gas (CNG). In the paper, detailed multi-cycle 3D-CFD analyses, starting for preliminary 1D computed boundary conditions, are performed to accurately characterize the engine behavior in terms of scavenging efficiency and combustion.
Technical Paper

Numerical Study of the Potential of a Variable Compression Ratio Concept Applied to a Downsized Turbocharged VVA Spark Ignition Engine

2017-09-04
2017-24-0015
Nowadays different technical solutions have been proposed to improve the performance of internal combustion engines, especially in terms of Brake Specific Fuel Consumption (BSFC). Its reduction of course contributes to comply with the CO2 emissions legislation for vehicle homologation. Concerning the spark ignition engines, the downsizing coupled to turbocharging demonstrated a proper effectiveness to improve the BSFC at part load. On the other hand, at high load, the above solution highly penalizes the fuel consumption mainly because of knock onset, that obliges to degrade the combustion phasing and/or enrich the air/fuel mixture. A promising technique to cope with the above drawbacks consists in the Variable Compression Ratio (VCR) concept. An optimal Compression Ratio (CR) selection, in fact, allows for further improvements of the thermodynamic efficiency at part load, while at high load, it permits to mitigate knock propensity, resulting in more optimized combustions.
Technical Paper

Multiple Injection in a Mixed Mode GDI Boosted Engine

2010-05-05
2010-01-1496
A numerical investigation is performed with the aim of understanding the potential benefits of multiple injections in the mixed mode boosting operation of a Gasoline Direct Injection (GDI) engine. The study is carried out by firstly characterizing a high pressure multi-hole injector from the experimental point of view in the split injection operation. Measurements of the fuel injection rate are made through an AVL Meter operating on the Bosch principle. The injector is tested using gasoline in a double pulse strategy. The injection pressure is varied between 5.0 and 25.0 MPa with the pulse durations calibrated for delivering a total mass up to 50 mg/str. The choice of the dwell time between two successive injection events is achieved by firstly defining the minimum time compatible with the mechanical characteristics of both the injector and the injector driver.
Technical Paper

Multi-Level Modeling of Real Syngas Combustion in a Spark Ignition Engine and Experimental Validation

2019-09-09
2019-24-0012
Syngas produced from biomass gasification is being increasingly considered as a promising alternative to traditional fuels in Spark-Ignition (SI) Internal Combustion Engines (ICEs). Due to the low energy density and extreme variability in the composition of this gaseous fuel, numerical modeling can give an important contribution to assure stable engine performances. The present work intends to give a contribution in this sense in this sense, by proposing a multi-level set of approaches, characterized by an increasing detail, as a tool aimed at the optimization of energy conversion of non-conventional fuels. At first, a specific characterization of the dependency of the syngas laminar flame speed upon its composition is achieved through an iterative approach pursued in the ANSYS ChemkinTM environment, where validated correlations of the flame speed tuning parameters are obtained in a zero-dimensional framework.
Journal Article

Knock and Cycle by Cycle Analysis of a High Performance V12 Spark Ignition Engine. Part 2: 1D Combustion and Knock Modeling

2015-09-06
2015-24-2393
The results of the experimental analyses, described in Part 1, are here employed to build up an innovative numerical approach for the 1D modeling of combustion, cycle-by-cycle variations and knock of a high performance 12-cylinder spark-ignition engine. The whole engine is schematized in detail in a 1D framework simulation, developed in the GT-Power™ environment. Proper “in-house developed” sub-models are used to describe the combustion process, turbulence phenomenon, cycle-by-cycle variations (CCV) and knock occurrence. In particular, the knock onset is evaluated by a chemical kinetic scheme for a toluene reference fuel, able to detect the presence of auto-ignition reactions in the end-gas zone. In a first stage, the engine model is validated in terms of overall performance parameter and ensemble averaged pressure cycles, for various full and part load operating points and spark timings.
Technical Paper

Knock Detection in a Turbocharged S.I. Engine Based on ARMA Technique and Chemical Kinetics

2013-10-14
2013-01-2510
During the last years, a number of techniques aimed at the experimental identification of the knocking onset in Spark-Ignition (SI) Internal Combustion Engines have been proposed. Besides the traditional procedures based on the processing of in-cylinder pressure data in the frequency domain, in the present paper two innovative methods are developed and compared. The first one is based on the use of statistical analysis by applying an Auto Regressive Moving Average (ARMA) technique, coupled to a prediction algorithm. It is shown that such parametric model, applied to the instantaneous in-cylinder pressure measurements, is highly sensitive to knock occurrence and is able to identify soft or heavy knock presence in different engine operating conditions. An alternative, more expensive procedure is developed and compared to the previous one.
Technical Paper

GDI Spray-Wall Interaction with Numerical Characterization: Wall Temperature Influence

2015-04-14
2015-01-0917
The work analyses, from both an experimental and a numerical point of view, the impingement of a spray generated from a GDI injector on a hot solid wall. The temperature of the surface is identified as an important parameter affecting the outcome after impact. A gasoline spray issuing from a customized single-hole injector is characterized in a quiescent optically-accessible vessel as it impacts on an aluminum plate placed at 22.5 mm from the injector tip. Optical investigations are carried out at atmospheric back-pressure by a direct schlieren optical set-up using a LED as light source. A synchronized C-Mos high-speed camera captures cycle-resolved images of the evolving impact. The spatial and temporal evolution of the liquid and vapor phases are derived. They serve to define a data base to be used for the validation of a properly formulated 3D CFD model suitable to describe the impact of the fuel on the piston head in a real engine.
Journal Article

Fuel Economy Improvement and Knock Tendency Reduction of a Downsized Turbocharged Engine at Full Load Operations through a Low-Pressure EGR System

2015-04-14
2015-01-1244
It is well known that the downsizing philosophy allows the improvement of Brake Specific Fuel Consumption (BSFC) at part load operation for spark ignition engines. On the other hand, the BSFC is penalized at high/full load operation because of the knock occurrence and of further limitations on the Turbine Inlet Temperature (TIT). Knock control forces the adoption of a late combustion phasing, causing a deterioration of the thermodynamic efficiency, while TIT control requires enrichment of the Air-to-Fuel (A/F) ratio, with additional BSFC drawbacks. In this work, a promising technique, consisting of the introduction of a low-pressure cooled exhaust gas recirculation (EGR) system, is analyzed by means of a 1D numerical approach with reference to a downsized turbocharged SI engine. Proper “in-house developed” sub-models are used to describe the combustion process, turbulence phenomenon and the knock occurrence.
Journal Article

Fuel Consumption Optimization and Noise Reduction in a Spark-Ignition Turbocharged VVA Engine

2013-04-08
2013-01-1625
Modern VVA systems offer new potentialities in improving the fuel consumption for spark-ignition engines at low and medium load, meanwhile they grant a higher volumetric efficiency and performance at high load. Recently introduced systems enhance this concept through the possibility of concurrently modifying the intake valve opening, closing and lift leading to the development of almost "throttle-less" engines. However, at very low loads, the control of the air-flow motion and the turbulence intensity inside the cylinder may require to select a proper combination of the butterfly throttling and the intake valve control, to get the highest BSFC (Brake Specific Fuel Consumption) reduction. Moreover, a low throttling, while improving the fuel consumption, may also produce an increased gas-dynamic noise at the intake mouth. In highly "downsized" engines, the intake valve control is also linked to the turbocharger operating point, which may be changed by acting on the waste-gate valve.
X