Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Steady and Transient Fluid Dynamic Analysis of the Tumble and Swirl Evolution on a 4V Engine with Independent Intake Valves Actuation

2008-10-06
2008-01-2392
This work aims at analyzing the fluid dynamic characteristics of a Ducati 4 valves SI engine, for racing motorcycle, during the intake and compression strokes, focusing on the correlation between steady state flow test data (experiments and simulations) and transient CFD simulation results, including the effect of variable valve actuation strategies with independent intake valve actuation. Several steady state flow test data were available in terms of maps of the discharge, tumble and swirl coefficients, at any combination of asymmetric lifts of the two intake valves. From these steady state data it can be argued that asymmetric strategies could enhance engine full load and part load operation characteristics, by exploiting favourable trade off occurring between the opposing needs for high mass flow rate and high charge motion intensity.
Technical Paper

Spray Modeling for Outwardly-Opening Hollow-Cone Injector

2016-04-05
2016-01-0844
The outwardly-opening piezoelectric injector is gaining popularity as a high efficient spray injector due to its precise control of the spray. However, few modeling studies have been reported on these promising injectors. Furthermore, traditional linear instability sheet atomization (LISA) model was originally developed for pressure swirl hollow-cone injectors with moderate spray angle and toroidal ligament breakups. Therefore, it is not appropriate for the outwardly-opening injectors having wide spray angles and string-like film structures. In this study, a new spray injection modeling was proposed for outwardly-opening hollow-cone injector. The injection velocities are computed from the given mass flow rate and injection pressure instead of ambiguous annular nozzle geometry. The modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) breakup model is used with adjusted initial Sauter mean diameter (SMD) for modeling breakup of string-like structure.
Technical Paper

Probabilistic Approach to Predict Abnormal Combustion in Spark Ignition Engines

2018-09-10
2018-01-1722
This study presents a computational framework to predict the outcome of combustion process based on a given RANS initial condition by performing statistical analysis of Sankaran number, Sa, and ignition regime theory proposed by Im et al. [1]. A criterion to predict strong auto-ignition/detonation a priori is used in this study, which is based on Sankaran-Zeldovich criterion. In the context of detonation, Sa is normalized by a sound speed, and is spatially calculated for the bulk mixture with temperature and equivalence ratio stratifications. The initial conditions from previous pre-ignition simulations were used to compute the spatial Sa distribution followed by the statistics of Sa including the mean Sa, the probability density function (PDF) of Sa, and the detonation probability, PD. Sa is found to be decreased and detonation probability increased significantly with increase of temperature.
Journal Article

Prediction of the Nozzle Flow and Jet Characteristics at Start and End of Injection: Transient Behaviors

2015-09-01
2015-01-1850
This paper reports investigations on diesel jet transients, accounting for internal nozzle flow and needle motion. The calculations are performed with Large Eddy Simulation (LES) turbulence model by coupling the internal and external multiphase flows simultaneously. Short and multiple injection strategies are commonly used in internal combustion engines. Their features are significantly different from those generally found in steady state conditions, which have been extensively studied in the past, however, these conditions are seldom reached in modern engines. Recent researches have shown that residual gas can be ingested in the injector sac after the end-of-injection (EOI) and undesired dribbles can be produced. Moreover, a new injection event behaves differently at the start-of-injection (SOI) depending on the sac initial condition, and the initial spray development can be affected for the first few tens of μs.
Technical Paper

Penetration and combustion characterization of cavitating and non-cavitating fuel injectors under diesel engine conditions

2016-04-05
2016-01-0860
This work investigates the effects of cavitation on spray characteristics by comparing measurements of liquid and vapor penetration as well as ignition delay and lift-off length. A smoothed-inlet, converging nozzle (nominal KS1.5) was compared to a sharp-edged nozzle (nominal K0) in a constant-volume combustion vessel under thermodynamic conditions consistent with modern compression ignition engines. Within the near-nozzle region, the K0 nozzle displayed larger radial dispersion of the liquid as compared to the KS1.5 nozzle, and shorter axial liquid penetration. Moving downstream, the KS1.5 jet growth rate increased, eventually reaching a growth rate similar to the K0 nozzle while maintaining a smaller radial width. The increasing spreading angle in the far field creates a virtual origin, or mixing offset, several millimeters downstream for the KS1.5 nozzle.
Technical Paper

Numerical Simulations of High Reactivity Gasoline Fuel Sprays under Vaporizing and Reactive Conditions

2018-04-03
2018-01-0292
Gasoline compression ignition (GCI) engines are becoming more popular alternative for conventional spark engines to harvest the advantage of high volatility. Recent experimental study demonstrated that high reactivity gasoline fuel can be operated in a conventional mixing controlled combustion mode producing lower soot emissions than that of diesel fuel under similar efficiency and NOx level [1]. Therefore, there is much interest in using gasoline-like fuels in compression ignition engines. In order to improve the fidelity of simulation-based GCI combustion system development, it is mandatory to enhance the prediction of spray combustion of gasoline-like fuels. The purpose of this study is to model the spray characteristics of high reactivity gasoline fuels and validate the models with experimental results obtained through an optically accessible constant volume vessel under vaporizing [2] and reactive conditions [3].
Technical Paper

Numerical Investigation of Water Injection Effects on Flame Wrinkling and Combustion Development in a GDI Spark Ignition Optical Engine

2021-04-06
2021-01-0465
The new real driving emission cycles and the growing adoption of turbocharged GDI engines are directing the automotive technology towards the use of innovative solutions aimed at reducing environmental impact and increasing engine efficiency. Water injection is a solution that has received particular attention in recent years, because it allows to achieve fuel savings while meeting the most stringent emissions regulations. Water is able to reduce the temperature of the gases inside the cylinder, coupled with the beneficial effect of preventing knock occurrences. Moreover, water dilutes combustion, and varies the specific heat ratio of the working fluid; this allows the use of higher compression ratios, with more advanced and optimal spark timing, as well as eliminating the need of fuel enrichment at high load. Computational fluid dynamics simulations are a powerful tool to provide more in-depth details on the thermo-fluid dynamics involved in engine operations with water injection.
Journal Article

Numerical Investigation of Two-Phase Flow Evolution of In- and Near-Nozzle Regions of a Gasoline Direct Injection Engine During Needle Transients

2016-04-05
2016-01-0870
This work involves modeling internal and near-nozzle flows of a gasoline direct injection (GDI) nozzle. The Engine Combustion Network (ECN) Spray G condition has been considered for these simulations using the nominal geometry of the Spray G injector. First, best practices for numerical simulation of the two-phase flow evolution inside and the near-nozzle regions of the Spray G injector are presented for the peak needle lift. The mass flow rate prediction for peak needle lift was in reasonable agreement with experimental data available in the ECN database. Liquid plume targeting angle and liquid penetration estimates showed promising agreement with experimental observations. The capability to assess the influence of different thermodynamic conditions on the two-phase flow nature was established by predicting non-flashing and flashing phenomena.
Technical Paper

Numerical Analysis of a New Concept Variable Valve Actuation System

2006-09-14
2006-01-3008
The present work concerns the analysis of a concept for a new variable valve actuation system for internal combustion engines, denoted HVC (Hydraulic Valve Control system). The system is an electro-hydraulic device which aims at minimizing the power consumption required for the valve actuation. Unlike lost motion devices, where the excess pumped oil is wasted in order to control the lift profile, the HVC system uses a reduced quantity of energy to ensure the actual lift profile. For that reason interesting potentialities to increase the global fuel conversion efficiency of the engine are expected, in addition to the benefits deriving from the control flexibility. The HVC system has been modeled by means of an hydraulic simulation tool, useful for the dynamic analysis of mechanical and hydraulic systems. In this work the main elements of the device will be described and their relevant modeling parameters will be discussed.
Technical Paper

Modeling of Heating and Evaporation of FACE I Gasoline Fuel and its Surrogates

2016-04-05
2016-01-0878
The US Department of Energy has formulated different gasoline fuels called ''Fuels for Advanced Combustion Engines (FACE)'' to standardize their compositions. FACE I is a low octane number gasoline fuel with research octane number (RON) of approximately 70. The detailed hydrocarbon analysis (DHA) of FACE I shows that it contains 33 components. This large number of components cannot be handled in fuel spray simulation where thousands of droplets are directly injected in combustion chamber. These droplets are to be heated, broken-up, collided and evaporated simultaneously. Heating and evaporation of single droplet FACE I fuel was investigated. The heating and evaporation model accounts for the effects of finite thermal conductivity, finite liquid diffusivity and recirculation inside the droplet, referred to as the effective thermal conductivity/effective diffusivity (ETC/ED) model.
Technical Paper

Model-based Development of Multi-Purpose Diagnostic Strategies for Gas Vehicles

2009-09-13
2009-24-0125
Engines using compressed natural gas or liquefied petroleum gas are commonly equipped with control systems which are not yet able to completely monitor the gas supply line status. With a particular regard to safety but paying attention even to driving comfort and finally to polluting emissions reduction, two aspects in particular have been taken into account: the first one is the need to detect as soon as possible (and to react consequently) the presence of a problem occurring inside gas supply line (leakages and blocked-valves etcetera); the second one is the ability to detect an unsafe re-fuel operation, done with inserted ignition key, in order to switch off at least as more auxiliary loads as possible. The danger from such a manoeuvre may be identified in the high probability of an eventual electrostatic discharge and/or in the risk that the vehicle may be accidentally moved during the refilling operation.
Technical Paper

Lean Combustion Analysis of a Plasma-Assisted Ignition System in a Single Cylinder Engine fueled with E85

2022-09-16
2022-24-0034
Engine research community is developing innovative strategies capable of reducing fuel consumption and pollutant emissions while ensuring, at the same time, satisfactory performances. Spark ignition engines operation with highly diluted or lean mixture is demonstrated to be beneficial for engine efficiency and emissions while arduous for combustion initiation and stability. Traditional igniters are unsuitable for such working conditions, therefore, advanced ignition systems have been developed to improve combustion robustness. To overcome the inherent efficiency limit of combustion engines, the usage of renewable fuels is largely studied and employed to offer a carbon neutral transition to a cleaner future. For such a reason, both innovative ignition systems and bio or E-fuels are currently being investigated as alternatives to the previous approaches. Within this context, the present work proposes a synergetic approach which combines the benefits of a biofuel blend, i.e.
Journal Article

Large-Eddy Simulation of Turbulent Dispersion Effects in Direct Injection Diesel and Gasoline Sprays

2019-04-02
2019-01-0285
In most large-eddy simulation (LES) applications to two-phase engine flows, the liquid-air interactions need to be accounted for as source terms in the respective governing equations. Accurate calculation of these source terms requires the relative velocity “seen” by liquid droplets as they move across the flow, which generally needs to be estimated using a turbulent dispersion model. Turbulent dispersion modeling in LES is very scarce in the literature. In most studies on engine spray flows, sub-grid scale (SGS) models for the turbulent dispersion still follow the same stochastic approach originally proposed for Reynolds-averaged Navier-Stokes (RANS). In this study, an SGS dispersion model is formulated in which the instantaneous gas velocity is decomposed into a deterministic part and a stochastic part. The deterministic part is reconstructed using the approximate deconvolution method (ADM), in which the large-scale flow can be readily calculated.
Technical Paper

Investigation of the Engine Combustion Network Spray C Characteristics at High Temperature and High-Pressure Conditions Using Eulerian Model

2021-09-05
2021-24-0056
The morphology of the internal flow of Spray C was numerically investigated using an Eulerian volume-of-fluid (VOF) method in the finite-volume framework. The injector geometry available in the Engine Combustion Network (ECN) was employed, and the simulations were performed under the ambient condition at 900 K and 60 bar. The simulation data were analyzed for three important events: the initial nozzle opening, steady injection, and nozzle closing. First, projected densities on XY and XZ planes are computed radially at four axial locations. Projected density at 2 mm is compared with available experimental results, which show similar results. Then, the mass flow rate is found to match the reported experimental results and the virtually generated values from CMT using an appropriate discharge coefficient. An investigation on the appropriate discharge coefficient is performed and found that Cd = 0.63 ± 0.02 is acceptable for Spray C.
Technical Paper

Injection Strategies Tuning for the Use of Bio-Derived Fuels in a Common Rail HSDI Diesel Engine

2003-03-03
2003-01-0768
The potentialities in terms of engine performance and emissions reduction of pure biodiesel were examined on a Common Rail HSDI Diesel engine, trying to define a proper tuning of the injection strategies to bio-fuel characteristics. An experimental investigation was therefore carried out on a typical European passenger car Diesel engine, fuelled with a soybean oil derived biodiesel. A standard European diesel fuel was also used as a reference. In particular, the effects of an equal relative air/fuel ratio at full load condition were analysed; further, a sensitivity study on the outcome of the pilot injection timing and duration at part load on engine emissions was performed. Potentialities in recovering the performance gap between fossil fuel and biodiesel and in reducing NOx specific emissions, affecting only to a limited extent the biodiesel emission benefit in terms of CO, HC and FSN, were highlighted.
Technical Paper

Heavy-Duty Compression-Ignition Engines Retrofitted to Spark-Ignition Operation Fueled with Natural Gas

2019-09-09
2019-24-0030
Natural gas is a promising alternative gaseous fuel due to its availability, economic, and environmental benefits. A solution to increase its use in the heavy-duty transportation sector is to convert existing heavy-duty compression ignition engines to spark-ignition operation by replacing the fuel injector with a spark plug and injecting the natural gas inside the intake manifold. The use of numerical simulations to design and optimize the natural gas combustion in such retrofitted engines can benefit both engine efficiency and emission. However, experimental data of natural gas combustion inside a bowl-in-piston chamber is limited. Consequently, the goal of this study was to provide high-quality experimental data from such a converted engine fueled with methane and operated at steady-state conditions, exploring variations in spark timing, engine speed and equivalence ratio.
Technical Paper

Fuel Economy Optimization of Euro 6 Compliant Light Commercial Vehicles Equipped with SCR

2014-04-01
2014-01-1356
The Selective Catalytic Reduction (SCR) system, installed on the exhaust line, is currently widely used on Diesel heavy-duty trucks and it is considered a promising technique for Euro 6 compliancy for light and medium duty trucks and bigger passenger cars. Moreover, new more stringent emission regulations and homologation cycles are being proposed for Euro 6c stage and they are scheduled to be applied by the end of 2017. In this context, the interest for SCR technology and its application on light-duty trucks is growing, with a special focus on its potential benefit in term of fuel consumption reduction, thanks to combustion optimization. Nevertheless, the need to warm up the exhaust gas line, to meet the required NOx conversion efficiency, remains an issue for such kind of applications.
Technical Paper

Fluid Dynamic 1D Modeling for the Design Optimization of Reed Valve Devices in Secondary Air Injection Applications

2005-09-11
2005-24-080
Modeling and studies on reed valve devices are topics often dealt with when designing internal combustion engine intake and exhaust systems. This paper describes an activity about the modeling and the optimization potentiality of an engine equipped with a secondary air injection system by means of a reed valve device. The first step of the work dealt with the development and tuning of a non-linear Finite Element model of reed valve and with the integration of this model into a one-dimensional fluid-dynamics simulation code. In particular during this phase the potentialities of the method were tested by implementing the FE model both in a 1D University code and in a 1D commercial code (by means of a provided interface for User Defined Elements). In the second step of the work the simulation results were analyzed for different engine operating points.
Technical Paper

Flow Characterization of a High Performance S.I. Engine Intake System - Part 1: Experimental Analysis

2003-03-03
2003-01-0623
In this work an experimental analysis is performed to evaluate the influence of different flow bench test conditions and system configurations on the flow characteristics in the intake system of a high performance 4-valve, SI Internal Combustion Engine: valve lift, test pressure drop, throttle valve aperture, throttle valve opening direction in respect to the intake system layout (i.e. clockwise/counterclockwise), presence of the tumble adaptor. To this aim, experimental tests are performed on a Ducati Corse racing engine cylinder head, by measuring the discharge coefficient and the tumble coefficient. The several experimental data obtained by combining the different operational and geometrical parameters are analysed and discussed.
Technical Paper

Experimental and Numerical Study of an Electro-Hydraulic Camless VVA System

2008-04-14
2008-01-1355
This paper presents the current research activity about an electro-hydraulic camless valve actuation system for internal combustion engines. From a general point of view, this system (Hydraulic Valve Control - HVC) is an open loop device for engine valve fully flexible camless actuation. In the HVC system, the valve actuation timing and duration are controlled by varying the driving signal of the pilot stage, which is governed by a solenoid, fast-acting, three-way valve; the valve lift is adjusted by varying the oil pressure of the power stage. This system uses hydraulic forces to open the engine valve while a mechanical spring is used for its closure. The HVC key element is a spool valve, which operates as a three way / three position valve. This element is designed in order to ensure the synchronization of its own motion with that of the poppet valve mass-spring system.
X