Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Total Cylinder Sampling from a Diesel Engine: Part III - Particle Measurements

1983-02-01
830243
Particle formation, growth, coagulation and combustion in the cylinder of an indirect injection passenger car type diesel engine have been studied using a system which allows the cylinder contents to be rapidly expelled through a blowdown port, diluted, and collected in a sample bag for subsequent analysis. Characteristic blowdown times were about 0.5 ms. Samples were analyzed using a condensation nuclei counter to determine particle number concentrations and an electrical aerosol analyzer to determine particle volume concentrations in the 0.01 to 1.0 μm diameter range. Measurements were made with the engine operating at 1000 rpm and an equivalence ratio of 0.32. Peak particle number concentration in the cylinder 13 times the exhaust level, and peak particle volume (or mass) concentration in the cylinder 3 times the exhaust level were observed. These results suggest that significant particle coagulation and oxidation occur during the expansion stroke.
Technical Paper

The Performance of an Electrostatic Agglomerator as a Diesel Soot Emission Control Device

1990-02-01
900330
A major problem with many soot emission control devices is the fact that they quickly become loaded with soot which must be removed by a controlled burning (regeneration) process. The need for regeneration greatly complicates such diesel particle emission control devices. In this paper, an electrostatic agglomerator (ESA) which efficiently collects diesel particles but does not require regeneration is described. The ESA is an electrostatic precipitator which is designed to collect and subsequently reentrain diesel soot particles. The collection and reentrainment processes results in growth of particle diameter from roughly 0.2 μm to larger than 1.0 μm. The agglomerated particles are large enough to be collected by a relatively simple inertial device, e.g., a cyclone separator. The collected particle may be either recycled to the engine or disposed of by other means. Electrostatic collection is made easier by the fact that diesel particles are charged by the combustion process itself.
Technical Paper

The Influence of a Ceramic Particle Trap on the Size Distribution of Diesel Particles

1985-02-01
850009
The U.S. Bureau of Mines has sponsored research Co determine the particle size distribution and concentration of submicron particles upstream and downstream of a ceramic particle trap mounted in the exhaust stream of a Caterpillar 3304 diesel engine. Particle size distribution and mass were measured with an electrical aerosol analyzer, a diffusion battery-condensation nuclei counter combination, and filters. The engine was operated at 1400 and 1800 RPM and 3 load conditions at each speed-In general, the collection efficiency of the trap was high, ranging between 89 to 96%. Size distribution analysis revealed that the trap was generally more efficient at removing particles smaller than 0.1 µm diameter than larger particles. However, under certain conditions formation of nuclei (less than 0.056 µm diameter) downstream of the trap took place.
Technical Paper

The Influence of Engine Lubricating Oil on Diesel Nanoparticle Emissions and Kinetics of Oxidation

2003-10-27
2003-01-3179
Earlier work [1] shows that kinetics of Diesel soot oxidation is different from that of ethylene diffusion flame soot oxidation [2], possibly due to metals from lube oil. This study investigates the influence of metals on soot oxidation and the exhaust particle emissions using lube oil dosed fuel (2 % by volume). This method does not simulate normal lube oil consumption, but is used as a means of adding metals to particles for oxidation studies. This study also provides insight into the effect of systems that mix lube oil with fuel to minimize oil change service. The HTO-TDMA (High Temperature Oxidation-Tandem Differential Mobility Analyzer) technique [1] was used to measure the surface specific oxidation rate of Diesel particles over the temperature range 500-750 °C. Diesel particles sampled from the exhaust stream of a Diesel engine were size segregated by differential mobility and oxidized in situ in air in a heated flow tube of known residence time and temperature profile.
Technical Paper

The Dynamic Effect of Residual Gas Temperature on Combustion Torque at Idle

2001-09-24
2001-01-3558
The amount of residual gas present in the cylinder has a well documented effect on the combustion event at idle. The high levels of burnt gas present at low engine speed leads to significant cyclic variability. This paper presents research which indicates that the temperature of the residual gas, which can vary from event to event depending on the spark timing, also has a significant effect on the combustion torque. The more the spark timing is retarded from MBT timing, the more thermal energy is present in the exhaust gas. The idle speed control strategy typically varies the spark to give fast torque actuation for good speed regulation and hence the temperature of the residual gas may change significantly within the space of a few events. The paper shows evidence of the phenomenon (with fixed engine speed and air mass flow) and discusses possible causes. It then proceeds to develop a dynamic model for the behaviour.
Technical Paper

Spark Ignition Engine Knock Detection Using In-Cylinder Optical Probes

1996-10-01
962103
Two types of in-cylinder optical probes were applied to a single cylinder CFR engine to detect knocking combustion. The first probe was integrated directly into the engine spark plug to monitor the radiation from burned gas in the combustion process. The second was built into a steel body and installed near the end gas region of the combustion chamber. It measured the radiant emission from the end gas in which knock originates. The measurements were centered in the near infrared region because thermal radiation from the combustion products was believed to be the main source of radiation from a spark ignition engine. As a result, ordinary photo detectors can be applied to the system to reduce its cost and complexity. It was found that the measured luminous intensity was strongly dependent upon the location of the optical sensor.
Technical Paper

Size Distribution of Diesel Soot in the Lubricating Oil

1991-10-01
912344
Soot is the largest component of contaminants found in the diesel engine lubricating oil. The soot enters lubricating oil mainly through thermophoretic deposition on the cylinder wall. Although the mechanism is still not fully understood, it is generally accepted that soot particles promote engine wear, reducing engine component service life, fuel efficiency and performance. This problem will be further exacerbated when more and more diesel engines use EGR to reduce NOx emissions and when lubricating oil consumption is drastically reduced to control particulate emissions. In this study, lubricating oil samples were taken from 7 different operating diesel engines. The size distribution and concentration of the diesel soot particles in the lubricants were investigated by methods of photosedimentation and quantitative spectrophotometry. The size distributions were compared to those of soot particles in the exhaust.
Technical Paper

Significance of Fuel Sulfur Content and Dilution Conditions on Particle Emissions from a Heavily-Used Diesel Engine During Transient Operation

2007-04-16
2007-01-0319
The effects of fuel sulfur content and dilution conditions on diesel engine PM number emissions have been researched extensively through steady state testing. Most results show that the concentration of nuclei-mode particles emitted increases with fuel sulfur content. A few studies further observed that fuel sulfur content has little effect on the emissions of heavily-used engines. It has also been found that primary dilution conditions can have a large impact on the size and number distribution of the nuclei-mode particles. These effects, however, have not yet been fully understood through transient testing, the method used by governments worldwide to certify engines and regulate emissions, and a means of experimentation which generates realistic conditions of on-road vehicles by varying the load and speed of the engine.
Technical Paper

Residual Gas Fraction Measurement and Estimation on a Homogeneous Charge Compression Ignition Engine Utilizing the Negative Valve Overlap Strategy

2006-10-16
2006-01-3276
This paper is concerned with the Residual Gas Fraction measurement and estimation on a Homogeneous Charge Compression Ignition (HCCI) engine. A novel in-cylinder gas sampling technique was employed to obtain cyclic dynamic measurements of CO2 concentration in the compression stroke and in combination with CO2 concentration measurements in the exhaust stroke, cyclic Residual Gas Fraction was measured. The measurements were compared to estimations from a physical, 4-cylinder, single-zone model of the HCCI cycle and good agreement was found in steady engine running conditions. Some form of oscillating behaviour that HCCI exhibits because of exhaust gas coupling was studied and the model was modified to simulate this behaviour.
Technical Paper

Real-Time Smoke Sensor for Diesel Engines

1986-02-01
860157
This paper describes a system for real-time smoke detection in diesel engines. Preliminary results are presented from a very simple sensor which detects the net charge level on smoke particles. There appears to be a useful correlation between the peak charge level and the Bosch smoke number. The mechanism by which the particulates is discussed, though no firm conclusions are reached.
Technical Paper

Real Time Measurement of Volatile and Solid Exhaust Particles Using a Catalytic Stripper

1995-02-01
950236
A system has been developed that allows near real time measurements of total, volatile, and nonvolatile particle concentrations in engine exhaust. It consists of a short section of heated catalyst, a cooling coil, and an electrical aerosol analyzer. The performance of this catalytic stripper system has been characterized with nonvolatile (NaCl), volatile sulfate ((NH4)2 SO4), and volatile hydrocarbon (engine oil) particles with diameters ranging from 0.05-0.5 μm. The operating temperature of 300°C gives essentially complete removal of volatile sulfate and hydrocarbon particles, but also leads to removal of 15-25% of solid particles. This system has been used to determine total, volatile, and nonvolatile particle concentrations in the exhaust of a Diesel engine and a spark ignition engine. Volatile volume fractions measured in Diesel exhaust with the catalytic stripper system increased from 19-65% as the equivalence ratio (load) decreased from 0.64-0.13.
Technical Paper

Particulate Emissions from Diesel Engines:Influence of In-Cylinder Surface

1990-02-01
900645
There is a growing body of evidence that in-cylinder surfaces play an important role in determining the nature and quantity of soot emitted by diesel engines. This paper describes recent experimental results which demonstrate the importance of both the deposition of soot on walls during the combustion process and its subsequent reentrainment during exhaust blowdown. Soot deposition was demonstrated both experimentally and theoretically. The principal mechanism of soot deposition during combustion is thermophoresis. Our results suggest that the gross rate of in-cylinder deposition in the indirect injection diesel engine is between 20 and 45 percent of the net soot emission rate. Thus, a significant fraction of the soot emitted may have been stored on combustion chamber surfaces and protected from oxidation. Further evidence of wall deposition and subsequent reentrainment has been obtained by making time-resolved measurements of soot concentrations in the exhaust.
Technical Paper

Particle Growth and Oxidation in a Direct-Injection Diesel Engine

1989-02-01
890580
Time resolved primary and agglomerate particle size distribution measurements have been made on samples obtained from within the cylinder and from the exhaust of a single-cylinder modification of a 2.8 liter displacement, four-cylinder, naturally-aspirated, high swirl, direct-injection diesel engine. The total cylinder sampling method has been used to sample, quench, and dilute the entire contents of the cylinder in about 1 ms. Experiments have been performed at an equivalence ratio of 0.7 and a speed of 1000 RPM. An electrostatic aerosol sampler and a transmission electron microscope have been used to determine primary and agglomerate particle size distributions for both in-cylinder and exhaust samples. An electrical aerosol analyzer and a diffusion battery followed by a condensation nucleus counter were used to further characterize the agglomerate size distributions of exhaust samples.
Technical Paper

Parameterization and Transient Validation of a Variable Geometry Turbocharger for Mean-Value Modeling at Low and Medium Speed-Load Points

2002-10-21
2002-01-2729
The parameterization of variable geometry turbochargers for mean-value modeling is typically based on compressor and turbine flow and efficiency maps provided by the supplier. At low turbocharger speeds, and hence low airflows, the heat exchange via the turbocharger housing affects the temperature-based measurements of the efficiencies. Therefore, the low-speed operating regime of the turbocharger is excluded from the supplied maps and mean-value models mainly rely on extrapolation into this region, which is regularly met in emission drive cycles, and hence of significance. This paper presents experimental data from a 2.0-liter turbocharged common-rail diesel engine. While the flow maps extend from the high-speed region in a natural way, the efficiency maps are severely affected by the heat transfer effect. It is argued that this effect should be included in the mean-value model.
Technical Paper

Oxidation of Soot Agglomerates in a Direct Injection Diesel Engine

1992-02-01
920111
Carbon black particles, which morphologically and chemically simulate a diesel exhaust soot, were mixed with the intake air of a single-cylinder direct injection diesel engine to investigate the efficiency of their removal by oxidation in the combustion chamber. An aerosol generation system, which is capable of generating carbon black aerosol of a size distribution and mass flow rate comparable to those of the soot agglomerates, was developed first. The aerosol was then introduced into the engine which was operating on conventional fuel. Four methods were used to characterize the exhaust particles: an electrical aerosol analyzer, a condensation nuclei counter, a low volume filter, and a micro-orifice cascade impactor. The size distribution and concentration of the diesel soot particles in the lubricants were investigated by methods of photosedimentation and quantitative spectrophotometry, respectively.
Technical Paper

Origin of the Response of Electrostatic Particle Probes

1987-02-01
870476
This paper describes an examination of the origin of the response of a real-time exhaust particle sensor. The sensor works by detecting the net electrical charge carried by diesel exhaust particles emitted during exhaust blow-down. The distribution of charge on these particles has been measured using an electrical mobility analysis system. The results show that the exhaust particles are highly charged and that their charge distributions are nearly symmetrical. The sensor signal results from a slight departure from this symmetry. The results suggest that most of the charge on the exhaust particles results from bipolar charging by flame ions during combustion, but that the net charge detected by the sensor results from surface interactions which some of the larger particles undergo during exhaust blowdown.
Video

On-Road Evaluation of an Integrated SCR and Continuously Regenerating Trap Exhaust System

2012-06-18
Four-way, integrated, diesel emission control systems that combine selective catalytic reduction for NOx control with a continuously regenerating trap to remove diesel particulate matter were evaluated under real-world, on-road conditions. Tests were conducted using a semi-tractor with an emissions year 2000, 6-cylinder, 12 L, Volvo engine rated at 287 kW at 1800 rpm and 1964 N-m. The emission control system was certified for retrofit application on-highway trucks, model years 1994 through 2002, with 4-stroke, 186-373 kW (250-500 hp) heavy-duty diesel engines without exhaust gas recirculation. The evaluations were unique because the mobile laboratory platform enabled evaluation under real-world exhaust plume dilution conditions as opposed to laboratory dilution conditions. Real-time plume measurements for NOx, particle number concentration and size distribution were made and emission control performance was evaluated on-road.
Technical Paper

On the Time Delay in Continuous In-Cylinder Sampling From IC Engines

1989-02-01
890579
When gas sample is continuously drawn from the cylinder of an internal combustion engine, the sample that appears at the end of the sampling system corresponds to the in-cylinder content sometime ago because of the finite transit time which is a function of the cylinder pressure history. This variable delay causes a dispersion of the sample signal and makes the interpretation of the signal difficult An unsteady flow analysis of a typical sampling system was carried out for selected engine loads and speeds. For typical engine operation, a window in which the delay is approximately constant may be found. This window gets smaller with increase in engine speed, with decrease in load, and with the increase in exit pressure of the sampling system.
Technical Paper

Observations of Trans-stoichiometric AFR Spikes in UEGO Sensors

2000-10-16
2000-01-2837
This paper presents experimental data showing unexpected transient behaviour in several production universal exhaust gas oxygen (UEGO) sensors. The spike-like transients occur when passing through the stoichiometric point, and are particularly significant when passing from rich to lean. The paper illustrates how the spikes are affected by exhaust gas flow rate, deviation of air-to-fuel ratio (AFR) from stoichiometry, and rate of change of AFR while passing through stoichiometry. The spikes are most sensitive to the rate at which AFR passes through stoichiometry. Brief discussions on possible causes for the spikes, and on undesirable consequences for feedback control applications, are included.
Technical Paper

Nonintrusive Acoustic System for the Dynamic Timing of Diesel Engines

1983-02-01
830102
Vibration signals from diesel engines were analyzed for the purpose of isolating signals relating to injection or combustion which could be used to time the engines. Nonintrusive sensors, magnetically attached to the engine, were used to obtain these vibration signals. Components believed to be associated with combustion or fuel injection were electronically isolated from the remaining engine noise, and subsequently processed to produce specific timing signals. Digital data acquisition and averaging methods were used, coupled with computerized frequency analysis. The signals were experimentally correlated with the combustion process over a wide range of injection timing. The electronic processing system developed provides a real time digital measure of the timing. Data on the accuracy and correlation of experimental measurements will be presented.
X