Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Semi-Solid Casting of Magnesium and Aluminum Alloys via the CRP (Continuous Rheo-conversion Process)

2006-04-03
2006-01-0509
Semi-solid processing (SSM) has many advantages in that the alloy is cast at lower temperatures (i.e., in the two-phase region) giving rise to reduced die wear, as well as giving rise to novel microstructures. The resultant SSM processed castings are dendrite-free and do not contain hot tears; rather, the SSM structure is globular, and the liquid phase surrounding the globules acts as a “lubricant” during processing. Moreover, the flow of the slurry into the die cavity is more laminar than turbulent, since the starting metal is in the mushy region. This concept of SSM processing was realized by the development of a continuous process titled: CRP - Continuous Rheo-conversion Process. In this process, one allows the incipient solidification of alloy melt(s) under the combined effects of forced convection and rapid cooling rates. In the CRP, two liquids held at particular level of superheat, are passively mixed within a reactor.
Technical Paper

Microstructure and Mechanical Properties of Squeeze Cast AZ91D Magnesium Alloy

2005-04-11
2005-01-0330
Squeeze casting is considered a “high integrity” casting process because it imparts qualities (higher tensile properties, in particular ductility due to reduced or absence of porosity in the matrix, and the ability to heat treat) to a metal that are difficult to achieve with conventional casting techniques including gravity permanent mold (GPM) and high pressure, high velocity (HPDC) die casting. In recent years, the squeeze casting process has been widely used with various aluminum alloys to manufacture near-net shape automotive components requiring high strength, ductility or pressure tightness. However, with the emphasis on weight reduction, lower cost and improved performance of structural components, alternative lightweight materials including magnesium are now being seriously considered. Unfortunately, the use of magnesium as a structural material has been hindered by the lack of data on mechanical properties and the lack of new improved casting methods.
Technical Paper

Hot Chamber Diecasting of Magnesium Alloy AM50A for Automotive Interior Structural Components

1996-02-01
960416
Increased requirements for crash energy management in automotive interiors have led to increased application of magnesium alloy AM50A. Successful integration of this new alloy with hot chamber diecasting process technology requires substantial adjustment and attention to processes and practices. This paper details the conversion of magnesium AZ91D steering column diecastings to high ductility structural alloy. Description is given of the changes made to foundry practices, casting parameters, process compliance monitoring, and hot end component management. The resulting improvements allow production of components comparable to the traditional alloy in manufacturing process demands while offering improved ductility and impact strength.
Technical Paper

Evaluation of Recycled AZ91D Magnesium Alloy for Steering Column Components

1997-02-24
970332
A pilot production program was initiated to evaluate the suitability of recycled AZ91D magnesium alloy ingot in a production steering column component. Class I A291D magnesium alloy scrap was remelted and refined using an argon flotation technique. The non-metallic inclusion content of the metal was continually monitored by a newly developed light reflectance technique. In addition, chemistry was checked and adjusted to bring the metal into ASTM chemistry specifications. Analysis of the refining operation with respect to cleanliness showed that modifications to the argon gas distribution were necessary. After the necessary modifications were implemented, metal refining efficiency increased. The refined alloy was cast into 11 kg (25 lb.) ingots that were subsequently remelted at Contech's production facility. Parts were produced under the same conditions used for “virgin” metal, and the metal quality was again assessed with the light reflectance technique.
X