Refine Your Search

Topic

Search Results

Technical Paper

Using Pneumatic Hybrid Technology to Reduce Fuel Consumption and Eliminate Turbo-Lag

2013-04-08
2013-01-1452
For the vehicles with frequent stop-start operations, fuel consumption can be reduced significantly by implementing stop-start operation. As one way to realize this goal, the pneumatic hybrid technology converts kinetic energy to pneumatic energy by compressing air into air tanks installed on the vehicle. The compressed air can then be reused to drive an air starter to realize a regenerative stop-start function. Furthermore, the pneumatic hybrid can eliminate turbo-lag by injecting compressed air into manifold and a correspondingly larger amount of fuel into the cylinder to build-up full-load torque almost immediately. This paper takes the pneumatic hybrid engine as the research object, focusing on evaluating the improvement of fuel economy of multiple air tanks in different test cycles. Also theoretical analysis the benefits of extra boost on reducing turbo-lag to achieve better performance.
Technical Paper

Unified Backwards Facing and Forwards Facing Simulation of a Hybrid Electric Vehicle using MATLAB Simscape

2015-04-14
2015-01-1215
This paper presents the implementation of a vehicle and powertrain model of the parallel hybrid electric vehicle which can be used for several purposes: as a model for estimating fuel consumption, as a model for estimating performance, and as a control model for the hybrid powertrain optimisation. The model is specified as a multi-domain physical model in MATLAB Simscape, which captures the key electrical, mechanical and thermal energy flows in the vehicles. By applying hand crafted boundary conditions, this model can be simulated either in the forwards or backwards direction, and it can easily be simplified as required to address specific control problems. Modelling in the forwards direction, the driver inputs are specified, and the vehicle response is the model output. In the backwards direction, the vehicle velocity as a function of time is the specified input, and the engine torque, and fuel consumption are the model outputs.
Technical Paper

The Influence of Thermoelectric Materials and Operation Conditions on the Performance of Thermoelectric Generators for Automotive

2016-04-05
2016-01-0219
An automotive engine can be more efficient if thermoelectric generators (TEG) are used to convert a portion of the exhaust gas enthalpy into electricity. Due to the relatively low cost of the incoming thermal energy, the efficiency of the TEG is not an overriding consideration. Instead, the maximum power output (MPO) is the first priority. The MPO of the TEG is closely related to not only the thermoelectric materials properties, but also the operating conditions. This study shows the development of a numerical TEG model integrated with a plate-fin heat exchanger, which is designed for automotive waste heat recovery (WHR) in the exhaust gas recirculation (EGR) path in a diesel engine. This model takes into account the following factors: the exhaust gas properties’ variation along the flow direction, temperature influence on the thermoelectric materials, thermal contact effect, and heat transfer leakage effect. Its accuracy has been checked using engine test data.
Technical Paper

Study on Optimization of Regenerative Braking Control Strategy in Heavy-Duty Diesel Engine City Bus using Pneumatic Hybrid Technology

2014-04-01
2014-01-1807
Recovering the braking energy and reusing it can significantly improve the fuel economy of a vehicle which is subject to frequent braking events such as a city bus. As one way to achieve this goal, pneumatic hybrid technology converts kinetic energy to pneumatic energy by compressing air into tanks during braking, and then reuses the compressed air to power an air starter to realize a regenerative Stop-Start function. Unlike the pure electric or hybrid electric passenger car, the pneumatic hybrid city bus uses the rear axle to achieve regenerative braking function. In this paper we discuss research into the blending of pneumatic regenerative braking and mechanical frictional braking at the rear axle. The aim of the braking function is to recover as much energy as possible and at the same time distribute the total braking effort between the front and rear axles to achieve stable braking performance.
Technical Paper

Real-time Adaptive Predictive Control of the Diesel Engine Air-path Based on Fuzzy Parameters Estimation

2007-04-16
2007-01-0971
In this paper, a robust adaptive optimal tracking control design for the air-path system of diesel engines with uncertain parameters and external driver commands is proposed. First, an optimal controller based on the analytic solution of a performance index is derived. It achieves tracking of suitable references (corresponding to low emissions and fuel consumption) for both the air-fuel ratio and the fraction of the recirculated exhaust gas. Then, a fuzzy estimation algorithm is used to identify the plant parameters and consequently to adapt the controller online. The simulated diesel engine is a medium duty Caterpillar 3126B with six cylinders, equipped with a variable geometry turbocharger and an exhaust gas recirculation valve. The proposed controller design is based on the reduced third order mean value model and implemented as a closed-form nonlinear model predictive control law on the full order model.
Technical Paper

Prediction of NOx Emissions of a Heavy Duty Diesel Engine with a NLARX Model

2009-11-02
2009-01-2796
This work describes the application of Non-Linear Autoregressive Models with Exogenous Inputs (NLARX) in order to predict the NOx emissions of heavy-duty diesel engines. Two experiments are presented: 1.) a Non-Road-Transient-Cycle (NRTC) 2.) a composition of different engine operation modes and different engine calibrations. Data sets are pre-processed by normalization and re-arranged into training and validation sets. The chosen model is taken from the MATLAB Neural Network Toolbox using the algorithms provided. It is teacher forced trained and then validated. Training results show recognizable performance. However, the validation shows the potential of the chosen method.
Technical Paper

Online Adjustment of Start of Injection and Fuel Rail Pressure Based on Combustion Process Parameters of Diesel Engine

2013-04-08
2013-01-0315
Most modern diesel engines are equipped with common fuel rail system. The common fuel rail pressure and start of injection are two important fuel path control variables which are needed to be carefully calibrated over all engine operation range. They both have big effects on engine emissions, fuel consumptions and combustion noise performance. Though there are mature techniques such as design of experiment, model based calibration together with optimization method for engine calibration task, the engine test points are still many and the calibration costs are still high. Besides, the outputs of the calibration are look up tables or maps which are used in engine open loop control strategy in engine control system. Open loop control system has no adaptive and disturbance rejection ability. So the initially optimally calibrated look up control tables will gradually become less and less optimal when the engine is aging.
Technical Paper

Modelling the Exhaust Gas Recirculation Mass Flow Rate in Modern Diesel Engines

2016-04-05
2016-01-0550
The intrinsic model accuracy limit of a commonly used Exhaust Gas Recirculation (EGR) mass flow rate model in diesel engine air path control is discussed in this paper. This EGR mass flow rate model is based on the flow of a compressible ideal gas with unchanged specific heat ratio through a restriction cross-area within a duct. A practical identification procedure of the model parameters is proposed based on the analysis of the engine data and model structure. This procedure has several advantages which include simplicity, low computation burden and low engine test cost. It is shown that model tuning requires only an EGR valve sweep test at a few engine steady state operating points.
Technical Paper

Modelling the Compression Ignition Engine for Control: Review and Future Trends.

2004-03-08
2004-01-0423
Constraints change as pollutant standards or embedded diagnosis demands require improvements in model accuracy and their suitability for control algorithm synthesis. From thermodynamic mathematical modelling to non-parametric models, a wide range of techniques has been investigated for the last thirty years involving both physicists and control engineers. The purpose of this paper is to give an overview of current modelling techniques oriented control analysis and design for compression ignition engines. Short examples illustrate each techniques and existing applications are considered. Comparison of various engine models exhibit the trend to include more physical knowledge inside model-based control design.
Technical Paper

Modeling and Control of Diesel Engines Equipped with a Two-Stage Turbo-System

2008-04-14
2008-01-1018
The two-stage turbocharging technique is an effective way to improve performance and reduce emissions in diesel engines. In this paper, we consider a diesel engine equipped with an exhaust gas recirculation (EGR) valve and two turbochargers in series. The low pressure turbine is of fixed geometry and the high pressure turbine is a variable geometry turbine (VGT). The control objective is to regulate air-to-fuel (AFR), EGR exhaust fraction and the power ratio of the two turbines by coordinated manipulation of the EGR and VGT actuators. Unlike engines with a single turbocharger, in two-staged turbocharged engines, regulation of the power ratio of the turbines is also needed in order to adequately define the equilibrium point of the engine airpath. First, a mean value engine model (MVEM) is proposed to physically describe the air path dynamics. With rich excitation of the controls in the MVEM, we identify several linear models for different areas of the engine speed-torque envelope.
Technical Paper

Modeling and Control Design of a SOFC-IC Engine Hybrid System

2008-04-14
2008-01-0082
This paper presents a control system design strategy for a novel fuel cell - internal combustion engine hybrid power system. Dynamic control oriented models of the system components are developed. The transient behavior of the system components is investigated in order to determine control parameters and set-points. The analysis presented here is the first step towards development of a controller for this complex system. The results indicate various possibilities for control design and development. A control strategy is discussed to achieve system performance optimization.
Technical Paper

Modeling Techniques to Support Fuel Path Control in Medium Duty Diesel Engines

2010-04-12
2010-01-0332
In modern production diesel engine control systems, fuel path control is still largely conducted through a system of tables that set mode, timing and injection quantity and with common rail systems, rail pressure. In the hands of an experienced team, such systems have proved so far able to meet emissions standards, but they lack the analytical underpinning that lead to systematic solutions. In high degree of freedom systems typified by modern fuel injection, there is substantial scope to deploy optimising closed loop strategies during calibration and potentially in the delivered product. In an optimising controller, a digital algorithm will explicitly trade-off conflicting objectives and follow trajectories during transients that continue to meet a defined set of criteria. Such an optimising controller must be based on a model of the system behaviour which is used in real time to investigate the consequences of proposed control actions.
Journal Article

Input and Structure Choices of Neural Networks on the Fuel Flow Rate Prediction in the Transient Operation Condition

2012-11-01
2011-01-2458
Measurement accuracy and repeatability for fuel rate is the key to successfully improve fuel economy of diesel engines as fuel economy could only be achieve by precisely controlling air/fuel ratio and monitor real-time fuel consumption. The volumetric and gravimetric measurement principles are well-known methods to measure the fuel consumption of internal combustion engines. However, the fuel flow rate measured by these methods is not suitable for either real-time control or real-time measurement purposes. The problem concerning discontinuous data of fuel flow rate measured by using an AVL 733s fuel meter was solved for the steady state scenario by using neural networks. It is easier to choose inputs of the neural networks for the steady state scenario because the inputs could be chosen as the particular inputs which excited the system in the application.
Technical Paper

In-Cylinder Pressure Modelling with Artificial Neural Networks

2011-04-12
2011-01-1417
More and more stringent emission regulations require advanced control technologies for combustion engines. This goes along with increased monitoring requirements of engine behaviour. In case of emissions behaviour and fuel consumption the actual combustion efficiency is of highest interest. A key parameter of combustion conditions is the in-cylinder pressure during engine cycle. The measurement and detection is difficult and cost intensive. Hence, modelling of in-cylinder conditions is a promising approach for finding optimum control behaviour. However, on-line controller design requires real-time scenarios which are difficult to model and current modelling approaches are either time consuming or inaccurate. This paper presents a new approach of in-cylinder condition prediction. Rather than reconstructing in-cylinder pressure signals from vibration transferred signals through cylinder heads or rods this approach predicts the conditions.
Technical Paper

Explicit Model Predictive Control of the Diesel Engine Fuel Path

2012-04-16
2012-01-0893
For diesel engines, fuel path control plays a key role in achieving optimal emissions and fuel economy performance. There are several fuel path parameters that strongly affect the engine performance by changing the combustion process, by modifying for example, start of injection and fuel rail pressure. This is a multi-input multi-output problem. Linear Model Predictive Control (MPC) is a good approach for such a system with optimal solution. However, fuel path has fast dynamics. On-line optimisation MPC is not the good choice to cope with such fast dynamics. Explicit MPC uses off-line optimisation, therefore, it can be used to control the system with fast dynamics.
Journal Article

Evaluation of Spray/Wall Interaction Models under the Conditions Related to Diesel HCCI Engines

2008-06-23
2008-01-1632
Diesel homogeneous charge compression ignition (HCCI) engines with early injection can result in significant spray/wall impingement which seriously affects the fuel efficiency and emissions. In this paper, the spray/wall interaction models which are available in the literatures are reviewed, and the characteristics of modeling including spray impingement regime, splash threshold, mass fraction, size and velocity of the second droplets are summarized. Then three well developed spray/wall interaction models, O'Rourke and Amsden (OA) model, Bai and Gosman (BG) model and Han, Xu and Trigui (HXT) model, are implemented into KIVA-3V code, and validated by the experimental data from recent literatures under the conditions related to diesel HCCI engines. By comparing the spray pattern, droplet mass, size and velocity after the impingement, the thickness of the wall film and vapor distribution with the experimental data, the performance of these three models are evaluated.
Technical Paper

Evaluating the Performance Improvement of Different Pneumatic Hybrid Boost Systems and Their Ability to Reduce Turbo-Lag

2015-04-14
2015-01-1159
The objective of the work reported in this paper was to identify how turbocharger response time (“turbo-lag”) is best managed using pneumatic hybrid technology. Initially methods to improve response time have been analysed and compared. Then the evaluation of the performance improvement is conducted using two techniques: engine brake torque response and vehicle acceleration, using the engine simulation code, GT-SUITE [1]. Three pneumatic hybrid boost systems have been considered: Intake Boost System (I), Intake Port Boost System (IP) and Exhaust Boost System (E). The three systems respectively integrated in a six-cylinder 7.25 l heavy-duty diesel engine for a city bus application have been modelled. When the engine load is increased from no load to full load at 1600 rpm, the development of brake torque has been compared and analysed. The findings show that all three systems significantly reduce the engine response time, with System I giving the fastest engine response.
Technical Paper

Energy Recovery Systems for Engines

2008-04-14
2008-01-0309
Energy recovery from IC engines has proved to be of considerable interest across the range of vehicle applications. The motivation is substantial fuel economy gain that can be achieved with a minimal affect on the “host” technology of the vehicle. This paper reviews the initial results of a research project whose objective has been to identify system concepts and control methods for thermal recovery techniques. A vapour power cycle is the means of energy transfer. The architecture of the system is considered along with support of the fuel economy claims with the results of some hybrid vehicle modelling. An overview of the latest experimental equipment and design of the heat exchanger is presented. The choice of control architecture and strategy, whose goal is overall efficiency of the engine system, is presented and discussed. Some initial control results are presented.
Technical Paper

Dynamic Analysis of the Libralato Thermodynamic Cycle Based Rotary Engine

2013-04-08
2013-01-1620
In this paper an initial dynamic analysis of the Libralato rotary engine prototype is conducted based on a joint engine model. Through the investigation of the Libralato thermodynamic cycle and the geometry characteristics of the engine structure, a multi-chamber core engine model is developed via GT-Power, a commercial software. The whole engine working volume is divided into 5 parts, including an intake chamber, a compression chamber, a combustion chamber, an expansion chamber and a virtual chamber which is used to correct the actual volume variation of the expansion chamber at the end of expansion stroke. The performance of the developed model is validated by experimental results. Then an initial analysis on the engine thermodynamic cycle, the engine operation characteristics and the gas exchange process is conducted. Furthermore, a multi-body mechanism model is designed to analyze the mechanical properties of the engine.
Technical Paper

Disturbance Sources in the Diesel Engine Combustion Process

2013-04-08
2013-01-0318
When a diesel engine is running at steady state, the diesel combustion process still has some level of variation from cycle to cycle, even if engine load and all control inputs are fixed. This variation is a disturbance for the speed governor, and it could lead to less than optimal engine performance in terms of fuel economy, exhaust gas emission and noise emission. The most effective way to reduce this steady state combustion variation is by applying fuel path feedback control. The control action can be performed at a fixed frequency, or at a defined cycle event time. Intra-cycle control has the highest capacity to suppress the combustion deviation, as it measures the current cycle combustion performance and compensates for it within the same cycle using a very fast control response. Correct knowledge and a model of the disturbance sources and combustion variation patterns are essential in the design process of this intra-cycle control strategy.
X