Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effects of Injection Pressure, Intake Throttling, and Cylinder Deactivation on Fuel Consumption and Emissions for a Light Duty Diesel Engine at Idle Conditions

2020-04-14
2020-01-0303
The continuing growth of urban population centers has led to increased traffic congestion for which vehicles can spend considerable periods at low speed/low load and idle conditions. For light-duty diesel vehicles, these low load conditions are characterized by low engine exhaust temperatures (~100oC). Exhaust temperatures can be too low to maintain the activity of the catalytic exhaust aftertreatment devices (usually need >~200oC) which can lead to high emissions that contribute to deteriorating urban air quality. This study is a follow-on to two previous studies on the effects of throttling, post-injection, and cylinder deactivation (CDA) on light-duty diesel engine exhaust temperatures and emissions. The focus of the present study is on fuel consumption, exhaust temperatures, and emissions with and without cylinder deactivation or with fuel cutout, and the sensitivity to or effects of fuel rail pressure, along with observations of apparent idle engine friction.
Technical Paper

Effects of EGR, Swirl, and Cylinder Deactivation on Exhaust Temperatures of a Throttled Light-Duty Diesel Engine under Idle Conditions

2019-04-02
2019-01-0544
This study extends a previous study on the effects of intake throttling and post-injection on light-duty Diesel engine exhaust temperatures and emissions, and includes the effects of EGR, in-cylinder swirl air motion, and cylinder deactivation. The baseline injection strategy was adapted from a 2014 Chevrolet Cruze having an engine similar to the light-duty GM engine used for this study. While the engine was fixed to a motoring engine dynamometer, the dynamometer was not active for the study, as the engine was operated under idle conditions. The desired idle speed was controlled using a feedback loop in the control algorithm to vary the duration of the main injection event. Three methods were investigated. In the first method, the engine was operated fully warmed up, firing all four cylinders.
X