Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Validation of a LES Spark-Ignition Model (GLIM) for Highly-Diluted Mixtures in a Closed Volume Combustion Vessel

2021-04-06
2021-01-0399
The establishment of highly-diluted combustion strategies is one of the major challenges that the next generation of sustainable internal combustion engines must face. The desirable use of high EGR rates and of lean mixtures clashes with the tolerable combustion stability. To this aim, the development of numerical models able to reproduce the degree of combustion variability is crucial to allow the virtual exploration and optimization of a wide number of innovative combustion strategies. In this study ignition experiments using a conventional coil system are carried out in a closed volume combustion vessel with side-oriented flow generated by a speed-controlled fan. Acquisitions for four combinations of premixed propane/air mixture quality (Φ=0.9,1.2), dilution rate (20%-30%) and lateral flow velocity (1-5 m/s) are used to assess the modelling capabilities of a newly developed spark-ignition model for large-eddy simulation (GLIM, GruMo-UniMORE LES Ignition Model).
Technical Paper

Validation of a CFD Methodology for the Analysis of Conjugate Heat Transfer in a High Performance SI Engine

2011-09-11
2011-24-0132
The paper presents a combined experimental and numerical activity carried out to improve the accuracy of conjugate heat transfer CFD simulations of a high-performance S.I. engine water cooling jacket. Due to the complexity of the computational domain, which covers both the coolant jacket and the surrounding metal cast (both head and block), particular care is required in order to find a tradeoff between the accuracy and the cost-effectiveness of the numerical procedure. In view of the presence of many complex physical phenomena, the contribution of some relevant CFD parameters and sub-models is separately evaluated and discussed. Among the formers, the extent of the computational domain, the choice of a proper set of boundary conditions and the detailed representation of the physical properties of the involved materials are separately considered.
Journal Article

Validation of a 1D Compressor Model for Performance Prediction

2013-09-08
2013-24-0120
In the present paper, a recently developed centrifugal compressor model is briefly summarized. It provides a refined geometrical schematization of the device, especially of the impeller, starting from a reduced set of linear and angular dimensions. A geometrical module reproduces the 3D geometry of the impeller and furnishes the data employed to solve the 1D flow equations inside the rotating and stationary ducts constituting the complete device. The 1D compressor model allows to predict the performance maps (pressure ratio and efficiency) with good accuracy, once the tuning of a number of parameters is realized to characterize various flow losses and heat exchange. To overcome the limitations related to the model tuning, unknown parameters are selected with reference to 5 different devices employing an optimization procedure (modeFRONTIER™).
Journal Article

Using 2d Infrared Imaging for the Analysis of Non-Conventional Fuels Combustion in a Diesel Engine

2015-04-14
2015-01-1646
The common realization of the necessity to reduce the use of mineral sources is promoting the use of alternative fuels. Big efforts are being made to replace petroleum derivatives in the internal combustion engines (ICEs). For this purpose it is mandatory to evaluate the behavior of non-conventional fuels in the ICEs. The optical diagnostics have proven to be a powerful tool to analyze the processes that take place inside the engine. In particular, 2d imaging in the infrared range can reveal new details about the effect of the fuel properties since this technique is still not very common. In this work, a comparison between commercial diesel fuel and two non-conventional fuels has been made in an optically accessible diesel engine. The non-conventional fuels are: the first generation biofuel Rapeseed Methyl Ester (RME) and an experimental blend of diesel and a fuel with high glycerol content (HG).
Technical Paper

Use of Renewable Oxygenated Fuels in Order to Reduce Particle Emissions from a GDI High Performance Engine

2011-04-12
2011-01-0628
The use of oxygenated and renewable fuels is nowadays a widespread means to reduce regulated pollutant emissions produced by internal combustion engines, as well as to reduce the greenhouse impact of transportation. Besides PM, NOx and HC emissions, also the size distribution of particles emitted at the engine exhaust represent meaningful information, considering its adverse effects on the environment and human health. In this work, the results of a comprehensive investigation on the combustion characteristics and the exhaust emissions of a GDI high performance engine, fuelled with pure bio-ethanol and European gasoline, are shown. The engine is a 4-cylinder, 4-stroke, 1750 cm₃ displacement, and turbocharged. The engine was operated at different speed/load conditions and two fuel injection strategies were investigated: homogeneous charge mode and stratified charge mode.
Technical Paper

Ultra-High Speed Fuel Tracer PLIF Imaging in a Heavy-Duty Optical PPC Engine

2018-04-03
2018-01-0904
In order to meet the requirements in the stringent emission regulations, more and more research work has been focused on homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) or partially premixed compression ignition (PCCI) as they have the potential to produce low NOx and soot emissions without adverse effects on engine efficiency. The mixture formation and charge stratification influence the combustion behavior and emissions for PPC/PCCI, significantly. An ultra-high speed burst-mode laser is used to capture the mixture formation process from the start of injection until several CADs after the start of combustion in a single cycle. To the authors’ best knowledge, this is the first time that such a high temporal resolution, i.e. 0.2 CAD, PLIF could be accomplished for imaging of the in-cylinder mixing process. The capability of resolving single cycles allows for the influence of cycle-to-cycle variations to be eliminated.
Journal Article

UV-Visible Spectroscopic Measurements of Dual-Fuel PCCI Engine

2011-09-11
2011-24-0061
In this work, optical diagnostics were applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat bio-ethanol was performed in the intake manifold and European commercial diesel fuel was injected into the cylinder. Different amounts of bio-ethanol were injected in order to create PCCI combustion with high levels of pre-combustion mixing, and to ensure low equivalence ratio and low flame temperatures too. UV-Visible imaging and spectroscopic measurements were performed in the engine in order to investigate the autoignition of the charge and the combustion process, respectively. In particular, the detection of the species involved in the combustion, like OH, HCO, and CH, was performed. The relevance of the radicals and species on PCCI were evaluated and compared with the data from thermodynamic analysis.
Technical Paper

UV-Visible Imaging of PCCI Engine Running with Ethanol/Diesel Fuel

2012-04-16
2012-01-1238
Premixed charge compression ignition (PCCI) has been shown to be a promising strategy to simultaneously reduce emissions while realizing improved fuel economy. PCCI combustion uses high levels of pre-combustion mixing to lower both NOx and soot emissions by ensuring low equivalence ratio and low flame temperatures. The high level of pre-combustion mixing results in a primarily kinetics controlled combustion process. In this work, optical diagnostics have been applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat ethanol has been performed in the intake manifold. The engine run in continuous way at 1500 rpm engine speed and commercial diesel fuel has been injected into the cylinder. The PCCI combustion has been analyzed by means of UV- Visible digital imaging and the mixing process, the autoignition of the charge have been investigated.
Technical Paper

Two Dimensional Analysis of Diesel Combustion by Spectral Flame Emissivity Measurements

1996-02-01
960838
Spectral flame emissivity and absorption measurements with high temporal and spatial resolution were performed in an optically accessible high-swirl divided-chamber Diesel system. Simultaneous determination of soot temperature, soot volume fraction and the OH radical concentration were made from the start to the end of the combustion in 153 locations equally distributed in the chamber. The engine was run at 2000 rpm and at fixed air-fuel ratio realizing 200 consecutive combustion cycles. To visualize the spatial and temporal spray and flame evolution, direct high-speed photographic sequences were taken at 8000 frames/s. The photographic sequences showed that the spray is strongly distorted and mixed by very high swirl resulting in a well premixed region where the combustion starts. The OH radicals were detected in the fuel reaction zone. Moreover OH concentration and soot volume fraction are well correlated with soot temperature.
Technical Paper

Turbulent Jet Ignition Effect on Exhaust Emission and Efficiency of a SI Small Engine Fueled with Methane and Gasoline

2020-09-27
2020-24-0013
Pollutant emission of vehicle cars is nowadays a fundamental aspect to take into account. In the last decays, the company have been forced to study new solutions, such as alternative fuel and learn burn mixture strategy, to reduce the vehicle’s pollutants below the limits imposed by emission regulations. Pre-chamber ignition system presents potential reductions in emission levels and fuel consumption, operating with lean burn mixtures and alternative fuels. As alternative fuels, methane is considered one of the most interesting. It has wider flammable limits and better anti-knock properties than gasoline. Moreover, it is characterized by lower CO2 emissions. The aim of this work is to study the evolution of the plasma jets in a different in-cylinder conditions. The activity was carried out in a research optical small spark ignition engine equipped alternatively with standard ignition system and per-chamber.
Technical Paper

Towards On-Line Prediction of the In-Cylinder Pressure in Diesel Engines from Engine Vibration Using Artificial Neural Networks

2013-09-08
2013-24-0137
This study aims at building efficient and robust artificial neural networks (ANN) able to reconstruct the in-cylinder pressure of Diesel engines and to identify engine conditions starting from the signal of a low-cost accelerometer placed on the engine block. The accelerometer is a perfect non-intrusive replacement for expensive probes and is prospectively suitable for production vehicles. In this view, the artificial neural network is meant to be efficient in terms of response time, i.e. fast enough for on-line use. In addition, robustness is sought in order to provide flexibility in terms of operation parameters. Here we consider a feed-forward neural network based on radial basis functions (RBF) for signal reconstruction, and a feed-forward multi-layer perceptron network with tan-sigmoid transfer function for signal classification. The networks are trained using measurements from a three-cylinder real engine for various operating conditions.
Technical Paper

Toward Predictive Combustion Modeling of CNG SI Engines in 1D Simulation Tools

2020-09-15
2020-01-2079
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional fuel to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

Thermodynamic and Tribological Analysis of an Innovative Mechanism for Reciprocating Machines

2023-08-28
2023-24-0016
Research and development studies regarding the internal combustion engines are, now more than ever, crucial in order to prevent a premature disposal for this application. An innovative technology is analyzed in this paper. The traditional slider-crank mechanism is replaced by a system of two ring-like elements crafted in such a way to transform the rotating motion of one element in the reciprocating motion of the other. This leads both to a less complex engine architecture and to the possibility to obtain a wide range of piston laws by changing the profile of the two cams. The relative motion of the cams is the peculiar feature of this engine and, due to this, alongside with the thermodynamic analysis, also the tribological aspects are investigated. 3D-CFD simulations are performed for several piston laws at different engine speeds to evaluate the cylinder pressure trace to be used as input data for the development of the tribological model.
Technical Paper

Thermal Imaging of a Li-Ion Battery for the Estimation of the Thermal Parameters and Instantaneous Heat Dissipated

2020-09-27
2020-24-0014
The electrochemical performance of a lithium-ion battery is strongly affected by the temperature. During charge and discharge cycles, batteries are subjected to an increment of temperature that can accelerate aging and loss of efficiency if critical values are reached. Knowing the thermal parameters that affect the heat exchange between the battery surface and the surrounding environment (air, cooling fins, plates, etc…) is fundamental to their thermal management. In this work, thermal imaging is applied to a laminated lithium-polymers battery as a non-invasive temperature-indication method. Measurements are taken during the discharge phase and the following cooling down until the battery reaches the ambient temperature. The 2d images are used to analyze the homogeneity of the temperature distribution on the battery surface. Then, experimental results are coupled with mathematical correlations.
Technical Paper

Theoretical Analysis of Multi-Zone and Transported Probability Density Function Approaches Applied to Low Temperature Combustion Process

2023-08-28
2023-24-0060
Electrification of transport, together with the decarbonization of energy production are suggested by the European Union for the future quality of air. However, in the medium period, propulsion systems will continue to dominate urban mobility, making mandatory the retrofitting of thermal engines by applying combustion modes able to reduce NOx and PM emissions while maintaining engine performances. Low Temperature Combustion (LTC) is an attractive process to meet this target. This mode relies on premixed mixture and fuel lean in-cylinder charge whatever the fuel type: from conventional through alternative fuels with a minimum carbon footprint. This combustion mode has been subject of numerous modelling approaches in the engine research community. This study provides a theoretical comparative analysis between multi-zone (MZ) and Transported probability density function (TPDF) models applied to LTC combustion process.
Technical Paper

The Effect of Ethanol and Methanol Blends on the Performance and the Emissions of a Turbocharged GDI Engine Operating in Transient Condition

2022-09-16
2022-24-0037
Direct injection spark ignition engines represent an effective technology to achieve the goal of carbon dioxide emission reduction. Further reduction of the carbon footprint can be achieved by using carbon-neutral fuels. Oxygenated alcohols are well consolidated fuels for spark ignition engines providing also the advantages of knock resistance and low soot tendency production. Methanol and ethanol are possible candidates as alternative fuels to gasoline due to their similar properties. In this study a blend at 25 % v/v of ethanol in gasoline (E25) and a blend with 80% gasoline, 5 % v/v ethanol and 15% v/v of methanol (GEM) were tested. These blends were considered since E25 is already available at fuel pump in some countries. The GEM blend, instead, could represent a valid alternative in the next future. Experiments were carried out on a high performance, turbocharged 1.8 L direct injection spark ignition engine over the Worldwide Harmonized Light Vehicles Test Cycle.
Technical Paper

Temperature Measurements of the Piston Optical Window in a Research Compression Ignition Engine via Thermography and Templugs

2018-04-03
2018-01-0083
Internal combustion engines are characterized by high pressure and thermal loads on pistons and in cylinders. The heat generated by the combustion process is dissipated by means of water and oil cooling systems. For the best design and optimization of the engine components it is necessary to know the components temperature in order to estimate the thermal flows. The purpose of this work is to measure the piston sapphire window temperature in a research optically accessible engine by combining two different techniques: measurements with templugs and with thermography. The method is very simple and can provide a reliable value of temperature within a small interval. It fits well for applications inside the engine because of its low technical level requirements. It consists of application of temperature sensitive stickers on the target component that makes it a very robust method, not affected by piston movement.
Technical Paper

Temperature Measurements of the Piston Optical Window in a Research Compression Ignition Engine to Set-Up a 1d Model of Heat Transfer in Transient Conditions

2019-09-09
2019-24-0182
The analysis of heat losses in internal combustion engines (ICEs) is fundamental to evaluate and to improve engine efficiency. Detailed and reliable heat transfer models are required for more complex 1d-3d combustion models. At the same time, the thermal status of engine components, like pistons, is needed for an efficient design. Measurements of piston temperature during ICEs operation represent an important and challenging result to get for the aforementioned purposes. In the present work, temperature measurements collected at different engine speeds and loads, both in motored and fired modes, have been performed and used to set-up a theoretical correlation and 1d model of heat transfer through the optical window of the piston. The in-cylinder gas and external ambient temperature, together with the thermodynamic and material properties are given. The model has been first calibrated in some selected operating conditions and then validated in the remaining.
Technical Paper

Techniques for CO2 Emission Reduction over a WLTC. A Numerical Comparison of Increased Compression Ratio, Cooled EGR and Water Injection

2018-05-30
2018-37-0008
In this work, various techniques are numerically applied to a base engine - vehicle system to estimate their potential CO2 emission reduction. The reference thermal unit is a downsized turbocharged spark-ignition Variable Valve Actuation (VVA) engine, with a Compression Ratio (CR) of 10. In order to improve its fuel consumption, preserving the original full-load torque, various technologies are considered, including an increased CR, an external low-pressure cooled EGR, and a ported Water Injection (WI). The analyses are carried out by a 1D commercial software (GT-Power™), enhanced by refined user-models for the description of in-cylinder processes, namely turbulence, combustion, heat transfer and knock. The latter were validated with reference to the base engine architecture in previous activities. To minimize the Brake Specific Fuel Consumption (BSFC) all over the engine operating plane, the control parameters of the base and modified engines are calibrated based on PID controllers.
Technical Paper

Sub-23 nm Particle Measurement and Assessment of Their Volatile Fraction at Exhaust of a Four Cylinder GDI Engine Fueled with E10 and E85 Under Transient Conditions

2021-09-05
2021-24-0087
In view of the new emission regulations seeking to lower the particle cut-off size down to the current 23 nm, an extensive comprehension on the nature of sub-23 nm particles is crucial. In this regard, a new challenge lies ahead considering an even more massive use of biofuels. The objective of this research study was to characterize the sub-23 nm particles and to evaluate their volatile organic fraction (VOF) from a high performance, 1.8 L gasoline direct injection (GDI) engine under the Worldwide harmonized Light vehicles Test Cycle (WLTC). Particle emissions were measured through an Engine Exhaust Particle Sizer (EEPS) capable of particle sizing and counting in the range 5.6 - 560 nm. The sampling and conditioning were performed by both a single diluter and the Dekati Engine Exhaust Diluter (DEED) a Particle Measurement Programme (PMP) compliant sample conditioning system.
X