Refine Your Search

Topic

Search Results

Journal Article

UniTire Model for Tire Forces and Moments under Combined Slip Conditions with Anisotropic Tire Slip Stiffness

2013-09-24
2013-01-2362
The tire mechanics characteristics are essential for analysis, simulation and control of vehicle dynamics. This paper develops the UniTire model for tire forces and moments under combined slip conditions with anisotropic tire slip stiffness. The anisotropy of tire slip stiffness, which means the difference of tire longitudinal slip stiffness and cornering stiffness, will cause that the direction of tire resultant shear stress in adhesion region is different from that in sliding region. Eventually the tire forces and moments under combined slip conditions will be influenced obviously. The author has proposed a “direction factor” before to modify the direction of resultant force in the tire-road contact patch, which can describe tire forces at cornering/braking combination accurately. However, the aligning moments which are very complicated under combined slip conditions are not considered in previous analysis.
Technical Paper

UniTire Model for Tire Cornering Properties under Varying Traveling Velocities

2016-09-27
2016-01-8037
The tire mechanics characteristics are essential for analysis and control of vehicle dynamics. Basically, the effects of sideslip, longitudinal slip, camber angle and vertical load are able to be represented accurately by current existing tire models. However, the research of velocity effects for tire forces and moments are still insufficient. Some experiments have demonstrated that the tire properties actually vary with the traveling velocity especially when the force and moment are nearly saturated. This paper develops an enhanced brush tire model and the UniTire semi-physical model for tire forces and moments under different traveling velocities for raising need of advanced tire model. The primary effects of velocity on tire performances are the rubber friction distribution characteristics at the tire-road interface.
Technical Paper

Tire Roller Contact Model for Simulation of Vehicle Vibration Input

1993-11-01
932008
To improve the quantitative accuracy of vehicle vibration studies, a roller contact tire model with the geometric filtering concept and a method to determine the effective road input are proposed. Computer simulation with the 13 DOF vehicle model for a light truck, based on two different tire models, and relevant outdoor tests for measuring the vehicle accelerations of both sprung and unsprung masses are presented. Comparisons of test data and simulation results show that the roller contact tire model renders much better simulation accuracy than the single point contact tire model. It is concluded that the roller contact tire model is a powerful concept which acts as a geometric filter, giving a simple method to calculate the enveloping effects of tires and the effective road elevation input.
Journal Article

Tire Model for Turn Slip Properties

2013-09-24
2013-01-2371
In this paper a tire model for describing tire turn slip properties is derived. The tread of the contact patch is divided into many massless elastic elements in both the length and width direction. Carcass deformation is expressed by the translation, bending and twisting function. A turn slip tire model is derived by analyzing the geometric relationships among the deformation of contact patch, tread and carcass. The model is validated by experimental results of parking maneuver. The model seems capable of generating transient and steady state forces and moments for turn slip, and showing varied trend of tire force according to different turn slip velocity. It could not only describe the tread deformation, but also analyze how the tread deformation affects the tire force and moment properties.
Technical Paper

Tire Carcass Camber and its Application for Overturning Moment Modeling

2013-04-08
2013-01-0746
The properties of contact patch are key factors for tire modeling. Researchers have paid more attention to the contact patch shape and vertical pressure distribution. Some innovative concepts, such as Local Carcass Camber, have been presented to explain special tire modeling phenomena. For a pragmatic tire model, a concise model structure and fewer parameters are considered as the primary tasks for the modeling. Many empirical tire models, such as the well-known Magic Formula model, would become more complex to achieve satisfactory modeling accuracy, due to increasing number of input variables, so the semi-empirical or semi-physical modeling method becomes more attractive. In this paper, the concept of Tire Carcass Camber is introduced first. Different from Local Carcass Camber, Tire Carcass Camber is an imaginary camber angle caused only by lateral force on the unloaded tire.
Technical Paper

Synthesis of Multi-Axle Steering System of Heavy Duty Vehicle Based on Probability of Steering Angle

2000-12-04
2000-01-3434
In the paper, the kinematics model and a mathematical optimization model for the multi-axle steering system of heavy-duty vehicle are established based on the mechanism kinematics analysis. A new weight function is designed considering the probability of steering angle. Takes 10×8 heavy-duty vehicle as an example, the parameters of multi-axle steering system are optimized. The result shows that the result with weight function has better effect than other conditions. We also develop mechanism kinematics analysis and simulation software. The work in the paper will help to guide the design of steering system of multi-axle steering heavy-duty vehicle.
Technical Paper

Steady State Power Properties Analysis of Parasite System for A PEM Fuel Cell Engine

2005-05-11
2005-01-2212
In this paper, a parasite system power empirical model of a PEM fuel cell engine suitable for the study of fuel cell vehicle simulation is developed by fitting the experimental data with quadratic polynomial. The assumption of the model is that the fuel cell stack is in steady-state condition. The properties of the parasite system power are analyzed. Based on the analysis of the properties of the parasite power, two parameters--- stack power factor RAS and FCE power factor RAF are introduced to evaluate the quality of the stack and the fuel cell engine. Moreover, the parasite system power model is verified by test data. The result indicates that the model is accurate to reflect the static performance of the parasite system. The advantage of the model is that its structure is simple, and its parameters are easy to be obtained. It is easy to apply to the study of fuel cell vehicle simulation.
Technical Paper

Stability Control of Four-Wheel-Drive Electric Vehicle with Electro-Hydraulic Braking System

2014-09-28
2014-01-2539
Four-wheel-drive electric vehicles (4WD Evs) utilize in-wheel electric motors and Electro-Hydraulic Braking system (EHB). Then, all wheels torque can be controlled independently, and the braking pressure can be controlled more accurately and more fast than conventional braking system. Because of these advantages, 4WD Evs have potential applications in control engineering. In this paper, the in-wheel electric motors and EHB are applied as actuators in the vehicle stability control system. Based on the Direct Yaw-moment Control (DYC), the optimized wheel force distribution is given, and the coordination control of the hydraulic braking and the motor braking torque is considered. Then the EHB hardware-in-the-loop test bench is established in order to verify the effectiveness of the vehicle stability control algorithm through experiments.
Technical Paper

Simulations of Tire Cornering Properties in Non-Steady State Conditions

1998-02-01
980254
Simulations of tire cornering properties with small-amplitude lateral inputs are carried out in non-steady state conditions. The simulation algorithm is derived and the discrete expressions are presented in detail. Based on the simulations, lateral force and aligning moment can be calculated numerically with time-varying yaw angle and lateral displacement as inputs in spatial domain. The flexibility of both tread and carcass along with tire width is taken into account effectively in the simulations, in which the flexibility of carcass includes translating, bending and twisting flexibility. The simulations in non-dimensional form are associated with four tire structure parameters only, which are non-dimensional parameters reflecting the characteristics of tire stiffness, tire width and contact length. Simulation results are validated by test data from step lateral inputs tests. Several typical simulation results are provided.
Technical Paper

Research on Tire Lateral Force Prediction under High-Load Condition

2015-04-14
2015-01-1524
The tire lateral force is essential to the vehicle handling and stability under cornering. However, it is difficult for engineers to get the tire lateral force under high loading condition due to the limitation of loading ability for most tire test machine in the world. The widely used semi-empirical tire lateral force models are obtained by curve-fitting experiments data and thus unable to predict the load dependent lateral force. The objective of this paper is to predict the tire lateral force under high-load condition based on the low-load tire data. The nonlinear characteristics of the tire cornering stiffness with the load are greatly affected by the tire carcass compliance. In this paper, a theoretical tire lateral model was built by considering carcass complex deformation. Combined with the relationship between the half-length of the tire contact patch and the load, the non-linear characteristics of the tire cornering stiffness with load were obtained.
Technical Paper

Research on Closed-Loop Comprehensive Evaluation Method of Vehicle Handling and Stability

2000-03-06
2000-01-0694
A closed-loop comprehensive evaluation and a test method for vehicle handling and stability have been studied by using development driving simulator. Simulator test scheme has been designed and carried out with 14 vehicle configurations, and subjective evaluation has been made for easy handling of vehicle by drivers. A closed-loop comprehensive evaluation index has been put forward considering the factors affecting vehicle handling and stability. The reliability of the index has been validated by driver's subjective evaluation. A driver/vehicle/ road closed-loop system model has been established, and the theoretical predictive evaluation has been carried out with 14 vehicle configurations. Simulation showed that similar result for both theoretical predictive evaluation and subjective evaluation.
Technical Paper

Properties Analysis of Hydrogen Consumption Rate for a PEM Fuel Cell Engine

2006-10-16
2006-01-3292
In this paper, a hydrogen consumption rate model of a PEM fuel cell engine is developed based on experimental data. The assumption of the model is that fuel cell stack works in steady-state condition. The relationships between the hydrogen consumption rate and stack current, stack power and Fuel Cell Engine (FCE) power are analyzed. Based on the hydrogen consumption rate model, a hydrogen specific consumption model is developed. Moreover, the models presented in this paper are verified by test data. The results indicate that these models are accurate to reflect the static performance of fuel cell stack and fuel cell engine. The advantages of these models are that theirs structures are very simple, and theirs parameters are easy to be obtained. They are easy to be applied to the study of fuel cell vehicle simulation.
Journal Article

Physical Modeling of Shock Absorber Using Large Deflection Theory

2012-04-16
2012-01-0520
In this paper, a shock absorber physical model is developed. Firstly, a rebound valve model which is based on its structure parameters is built through using the large deflection theory. The von Karman equations are introduced to discover the physical relationships between the load and the deflection of valve discs. An analytical solution of the von Karman equations is then deducted via perturbation method. Secondly, the flow equations and the pressure equations of the shock absorber operating are investigated. The relationship between fluid flow rate and pressure drop of rebound valve is analyzed based on the analytical solution of valve discs deflection. Thirdly, an inter-iterative process of flow rate and pressure drop is employed in order to adequately consider the influence of fluid flow on damping force. Finally, the physical model is validated by comparing the experimental data with the simulation output.
Technical Paper

Performance Prediction of Automotive Fuel Cell Stack with Genetic Algorithm-BP Neural Network

2018-04-03
2018-01-1313
Fuel cell vehicle commercialization and mass production are challenged by the durability of fuel cells. In order to research the durability of fuel cell stack, it is necessary to carry out the related durability test. The performance prediction of fuel cell stack can be based on a short time durability test result to accurately predict the performance of the fuel cell stack, so it can ensure the timeliness of the test results and reduce the cost of test. In this paper, genetic algorithm-BP neural network (GA-BPNN) is proposed to modeling automotive fuel cell stack to predict the performance of it. Based on the strong global searching ability of genetic algorithm, the initial weights and threshold selection of neural networks are optimized to solve the shortcoming that the random selection of the initial weights and thresholds of BP neural network which can easily lead to the local optimal value.
Journal Article

Modeling Combined Braking and Cornering Forces Based on Pure Slip Measurements

2012-09-24
2012-01-1924
A novel predictable tire model has been proposed for combined braking and cornering forces, which is based on only a few pure baking and pure cornering tests. It avoids elaborate testing of all kinds of combinations of braking and side forces, which are always expensive and time consuming. It is especially important for truck or other large size tires due to the capability constraints of tire testing facilities for combined shear forces tests. In this paper, the predictive model is based on the concept of slip circle and state stiffness method. The slip circle concept has been used in the COMBINATOR model to obtain the magnitude of the resultant force under combined slip conditions; however the direction assumption used in the COMBINATOR is not suitable for anisotropic tire slip stiffness.
Technical Paper

Key Items in Tire Non-Steady State Test

2002-07-09
2002-01-2231
In the paper, the Flat Plank Tire Tester of Changchun Automobile Institute is introduced. This paper, according to practical experiences, generalizes some issues in the tire's non-steady state test. In the non-steady state test, it must be assured that the footprint centerline of tire coincides with that of slid platform, which guarantees no sliding motion between tire and slid platform during the movement. Due to tire taper effect and inhomogeneous tire material, when its side slip angle is zero, side force and aligning torque are not zeros, but have initial values. Here two approaches are discussed to eliminate the side force and aligning torque. Besides, other factors in the test are put forward for discussion. Eliminating the interference can obviously improve the test accuracy. This paper also provides test curves of both pure side slip angle input and pure yaw angle input.
Technical Paper

Influences of Non-Steady State Tire Cornering Properties on Automobile Shimmy

1999-11-15
1999-01-3757
One of the most essential factors causing automobile and aircraft shimmy is energy import from road to tires due to tire hysteresis characteristic. The magnitudes and direction of the energy import are close to frequency responses of tire cornering properties (TCP), which can be calculated directly according to the presented non-steady state TCP theoretical model. Selfexcited shimmy is the main type of wheel shimmy and behaves as negative equivalent damping characteristic of the tire-road vibration subsystem. The values of energy import or equivalent damping determine the tendency of wheel shimmy. Tire structural parameters have certain effects on frequency response of TCP and thereby result in influences on wheel shimmy. Based on the tire model, some valid ways to decrease shimmy tendency are concluded through proper variations of carcass stiffness, tire-width, kingpin caster, tire pneumatic trail, tire cornering stiffness and so on.
Technical Paper

Incorporating Inflation Pressure into UniTire Model for Pure Cornering

2016-09-27
2016-01-8028
This paper focuses on the modeling process of incorporating inflation pressure into the UniTire model for pure cornering. Via observing and manipulating the tire experimental data, the effects of inflation pressure on the tire cornering property are analyzed in detail, including the impacts on cornering stiffness, the peak friction coefficient, the curvature of transition region and the pneumatic trail. And the brief mechanism explanations are also given for some of these impacts. The results show that some effects of inflation pressure are similar to that of vertical load on the non-dimensional tire cornering property, and there are strong interactive effects between the two operating conditions. Therefore, in order to obtain concise expressions, the inflation pressure is incorporated into the UniTire tire model by analogy with the expressions for vertical load, and the interactive effects are also taken into account.
Technical Paper

Fuzzy Slide Mode Control Method for ABS

2004-03-08
2004-01-0252
Based on fuzzy control and slide mode control methods, this paper presents a kind of fuzzy slide mode control method, which overcome the disadvantages of fuzzy control and slide mode control methods and combined the advantages of the two. It is a quite good control method.
Technical Paper

Experimental and Analytical Property Characterization of a Self-Damped Pneumatic Suspension System

2010-10-05
2010-01-1894
This study investigates the fundamental stiffness and damping properties of a self-damped pneumatic suspension system, based on both the experimental and analytical analyses. The pneumatic suspension system consists of a pneumatic cylinder and an accumulator that are connected by an orifice, where damping is realized by the gas flow resistance through the orifice. The nonlinear suspension system model is derived and also linearized for facilitating the properties characterization. An experimental setup is also developed for validating both the formulated nonlinear and linearized models. The comparisons between the measured data and simulation results demonstrate the validity of the models under the operating conditions considered. Two suspension property measures, namely equivalent stiffness coefficient and loss factor, are further formulated.
X