Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Microstructures and Failure Mechanisms of Spot Friction Welds in Lap-Shear Specimens of Aluminum 5754 Sheets

2005-04-11
2005-01-1256
Microstructures and failure mechanisms of spot friction welds (SFW) in aluminum 5754 lap-shear specimens were investigated. In order to study the effect of tool geometry on the joint strength of spot friction welds, a concave tool and a flat tool were used. In order to understand the effect of tool penetration depth on the joint strength, spot friction welds were prepared with two different penetration depths for each tool. The results indicated that the concave tool produced slightly higher joint strength than the flat tool. The joint strength did not change for the two depths for the flat tool whereas the joint strength slightly increases as the penetration depth increases for the concave tool. The experimental results show that the failure mechanism is necking and shearing for the spot friction welds made by both tools. The failure was initiated and fractured through the upper sheet under the shoulder indentation near the crack tip.
Journal Article

Mechanical Behavior and Failure Mechanism of Nb-Clad Stainless Steel Sheets

2009-04-20
2009-01-1393
Because niobium-clad 304L stainless steel sheets are considered for use as bipolar plates in polymer electrolyte membrane (PEM) fuel cells, their mechanical behavior and failure mechanism are important to be examined. As-rolled and annealed specimens were tested in tension, bending and flattening. The effects of annealing temperature and time on the mechanical behavior and failure mechanism were investigated. Micrographic analyses of bent and flattened specimens showed that the as-rolled specimens have limited ductility and that the annealed specimens can develop an intermetallic layer of thickness of a few microns. The annealed specimens failed due to the breakage of intermetallic layer causing localized necking and the subsequent failure of Nb layer. The springback angles of the as-rolled and annealed specimens were also obtained from guided-bend tests.
Technical Paper

Friction Stir Spot Welding of Advanced High-Strength Steels - A Feasibility Study

2005-04-11
2005-01-1248
An exploratory study was conducted to investigate the feasibility of friction stir spot welding advanced high-strength steel sheet metals. The fixed pin approach was used to weld 600MPa dual phase steel and 1310MPa martensitic steel. A single tool, made of polycrystalline cubic boron nitride, survived over one hundred welding trials without noticeable degradation and wear. Solid-state metallurgical bonding was produced with welding time in the range of 2 to 3 seconds, although the bonding ligament width was relatively small. The microstructures and hardness variations in the weld regions are discussed. The results from tensile-shear and cross-tensile tests are also presented.
Technical Paper

Friction Bit Joining of Dissimilar Material Combinations of High Strength Steel DP 980 and Al Alloy AA 5754

2009-04-20
2009-01-0031
A new spot joining technology relying on a consumable joining bit has been developed and evaluated on dual phase (DP) 980 steel and a dissimilar combination of aluminum alloy 5754-O and DP 980. This new process, called friction bit joining (FBJ), uses a consumable bit to create a solid-state joint in sheet materials by the action of cutting and frictional bonding. A series of experiments were done in which different welding parameters were employed and lap shear tension testing was carried out to evaluate performance. The best lap shear values averaged 6.5 kN.
X