Refine Your Search

Topic

Search Results

Technical Paper

The Design Optimization of Vehicle Interior Noise through Structural Modification and Constrained Layer Damping Treatment

2015-04-14
2015-01-0663
The design optimization of vehicle body structure is addressed to reduce interior noise and improve customer satisfaction in this paper. The structural-acoustic model is developed by using finite element method. The frequency response of structural-acoustic system is computed by modal analysis method. The optimization problem is constructed to minimize the sound pressure level in the right ear of the driver. The sensitivity analysis is carried out to find the key panels to be optimized as design variables and improve the efficiency of optimization computation. Response Surface Method (RSM) is utilized to develop the surrogate model and optimize the vehicle Noise Vehicle and Harshness (NVH) behavior. A 9dB reduction of sound pressure level (SPL) in the right era of the driver is obtained through geometric optimization for panels. Furthermore, the topology optimization model is developed to search the optimal layout of constrained layer damping treatments in the front floor.
Technical Paper

Reinforcement Learning Enhanced New Energy Vehicle Dynamic Subsidy Strategies

2022-03-29
2022-01-0226
In recent years, game theory and reinforcement learning have become very popular research fields in today's society. As the most strategic analysis and optimization research method, they can be used in the study of subsidy strategy of China's new energy automobile industry to solve the problems caused by the government's subsidy of new energy vehicles. This paper studies the evaluation methods and strategy optimization methods of government subsidy strategies in different situations, and applies them to the subsidy strategies and other strategy optimization problems of new energy vehicles in China. Firstly, based on game theory, this paper studies the evaluation method of government subsidy strategy in the case of “double reciprocity” and “one strong and one weak” by constructing the game process of “double reciprocity” enterprises and “one strong and one weak” enterprises.
Journal Article

On Stochastic Model Interpolation and Extrapolation Methods for Vehicle Design

2013-04-08
2013-01-1386
Finite Element (FE) models are widely used in automotive for vehicle design. Even with increasing speed of computers, the simulation of high fidelity FE models is still too time-consuming to perform direct design optimization. As a result, response surface models (RSMs) are commonly used as surrogates of the FE models to reduce the turn-around time. However, RSM may introduce additional sources of uncertainty, such as model bias, and so on. The uncertainty and model bias will affect the trustworthiness of design decisions in design processes. This calls for the development of stochastic model interpolation and extrapolation methods that can address the discrepancy between the RSM and the FE results, and provide prediction intervals of model responses under uncertainty.
Technical Paper

Multi Objective Optimization of Vehicle Crashworthiness Based on Combined Surrogate Models

2017-03-28
2017-01-1473
Several surrogate models such as response surface model and radial basis function and Kriging models are developed to speed the optimization design of vehicle body and improve the vehicle crashworthiness. The error analysis is used to investigate the accuracy of different surrogate models. Furthermore, the Kriging model is used to fit the model of B-pillar acceleration and foot well intrusion. The response surface model is used to fit the model of the entire vehicle mass. These models are further used to calculate the acceleration response in B-pillar, foot well intrusion and vehicle mass instead of the finite element model in the optimization design of vehicle crashworthiness. A multi-objective optimization problem is formulated in order to improve vehicle safety performance and keep its light weight. The particle swarm method is used to solve the proposed multi-objective optimization problem.
Technical Paper

Local Trajectory Planning and Control of Smart Vehicle Based on Enhanced Particle Swarm Optimization Method

2022-03-29
2022-01-0224
Intelligent driving is an important research direction in the field of artificial intelligence. The fourth industrial revolution represented by the Internet of things provides more prospects for the development of intelligent vehicles. Trajectory planning and tracking control is one of the key technologies of intelligent driving vehicle. This paper takes intelligent driving vehicle as the starting point and establishes a research method of intelligent vehicle trajectory planning based on particle swarm optimization, based on the vehicle kinematics and dynamics model, a model predictive control algorithm is built for trajectory tracking control, the simulation scene is built by Prescan, the vehicle dynamics parameters are set in Carsim, and then the joint simulation is carried out with Simulink.
Technical Paper

Investigation of the Samples Size Effects on Hybrid Surrogate Model Component Surrogates for Crashworthiness Design

2018-04-03
2018-01-1028
Surrogate model based design optimization has been widely adopted in automotive industry. Hybrid surrogate model with multiple component surrogates is considered to be a better choice when simulating highly non-linear responses in vehicle crashworthiness analysis. Currently, the number of component surrogates has to be decided before-hand when constructing of a hybrid surrogate model. This paper conducts a comparative study on the performances of three popular hybrid modeling methods including heuristic computation strategy, and two kinds of optimal weighted surrogates. The effects of samples size on the number of individual surrogates that should be included into the final hybrid surrogate models for crashworthiness responses are investigated. Different hybrid modeling techniques and multiple validation criteria are evaluated. Some observations and conclusions on the selection of component surrogates in hybrid surrogate modeling are given in the end.
Technical Paper

Intersection Signal Control Based on Speed Guidance and Reinforcement Learning

2023-04-11
2023-01-0721
As a crucial part of the intelligent transportation system, traffic signal control will realize the boundary control of the traffic area, it will also lead to delays and excessive fuel consumption when the vehicle is driving at the intersection. To tackle this challenge, this research provides an optimized control framework based on reinforcement learning method and speed guidance strategy for the connected vehicle network. Prior to entering an intersection, vehicles are focused on in a specific speed guidance area, and important factors like uniform speed, acceleration, deceleration, and parking are optimized. Conclusion, derived from deep reinforcement learning algorithm, the summation of the length of the vehicle’s queue in front of the signal light and the sum of the number of brakes are used as the reward function, and the vehicle information at the intersection is collected in real time through the road detector on the road network.
Technical Paper

Game Theory and Reinforcement Learning based Smart Lane Change Strategies

2022-03-29
2022-01-0221
With the development of science and technology, breakthroughs have been made in the fields of intelligent algorithms, environmental perception, chip embedding, scene analysis, and multi-information fusion, which together prompted the wide attention of society, manufacturers and owners of autonomous vehicles. As one of the key issues in the research of autonomous vehicles, the research of vehicle lane change algorithm is of great significance to the safety of vehicle driving. This paper focuses on the conflict of interest between the lane-changing vehicle and the target lane vehicle in the fully autonomous driving environment, and proposes the method of coupling kinematics and game theory and reinforcement learning based optimization, so that when the vehicle is in the process of lane changing game, the lane-changing vehicle and the target lane vehicle can make decisions that are beneficial to the balance of interests of both sides.
Technical Paper

Enhanced Error Assessment of Response Time Histories (EEARTH) Metric and Calibration Process

2011-04-12
2011-01-0245
Computer Aided Engineering (CAE) has become a vital tool for product development in automotive industry. Increasing computer models are developed to simulate vehicle crashworthiness, dynamic, and fuel efficiency. Before applying these models for product development, model validation needs to be conducted to assess the validity of the models. However, one of the key difficulties for model validation of dynamic systems is that most of the responses are functional responses, such as time history curves. This calls for the development of an objective metric which can evaluate the differences of both the time history and the key features, such as phase shift, magnitude, and slope between test and CAE curves. One of the promising metrics is Error Assessment of Response Time Histories (EARTH), which was recently developed. Three independent error measures that associated with physically meaningful characteristics (phase, magnitude, and slope) were proposed.
Journal Article

Development of a Comprehensive Validation Method for Dynamic Systems and Its Application on Vehicle Design

2015-04-14
2015-01-0452
Simulation based design optimization has become the common practice in automotive product development. Increasing computer models are developed to simulate various dynamic systems. Before applying these models for product development, model validation needs to be conducted to assess their validity. In model validation, for the purpose of obtaining results successfully, it is vital to select or develop appropriate metrics for specific applications. For dynamic systems, one of the key obstacles of model validation is that most of the responses are functional, such as time history curves. This calls for the development of a metric that can evaluate the differences in terms of phase shift, magnitude and shape, which requires information from both time and frequency domain. And by representing time histories in frequency domain, more intuitive information can be obtained, such as magnitude-frequency and phase-frequency characteristics.
Technical Paper

Development of Subject-Specific Elderly Female Finite Element Models for Vehicle Safety

2019-04-02
2019-01-1224
Previous study suggested that female, thin, obese, and older occupants had a higher risk of death and serious injury in motor vehicle crashes. Human body finite element models were a valuable tool in the study of injury biomechanics. The mesh deformation method based on radial basis function(RBF) was an attractive alternative for morphing baseline model to target models. Generally, when a complex model contained many elements and nodes, it was impossible to use all surface nodes as landmarks in RBF interpolation process, due to its prohibitive computational cost. To improve the efficiency, the current technique was to averagely select a set of nodes as landmarks from all surface nodes. In fact, the location and the number of selected landmarks had an important effect on the accuracy of mesh deformation. Hence, how to select important nodes as landmarks was a significant issue. In the paper, an efficient peak point-selection RBF mesh deformation method was used to select landmarks.
Technical Paper

Design Optimization of Vehicle Body NVH Performance Based on Dynamic Response Analysis

2017-03-28
2017-01-0440
Noise-vibration-harshness (NVH) design optimization problems have become major concerns in the vehicle product development process. The Body-in-White (BIW) plays an important role in determining the dynamic characteristics of vehicle system during the concept design phase. Finite Element (FE) models are commonly used for vehicle design. However, even though the speed of computers has been increased a lot, the simulation of FE models is still too time-consuming due to the increase in model complexity. For complex systems, like vehicle body structures, the numerous design variables and constraints make the FE simulations based optimization design inefficient. This calls for the development of a systematic and efficient approach that can effectively perform optimization to further improve the NVH performance, while satisfying the stringent design constraints.
Technical Paper

Data Mining Based Feasible Domain Recognition for Automotive Structural Optimization

2016-04-05
2016-01-0268
Computer modeling and simulation have significantly facilitated the efficiency of product design and development in modern engineering, especially in the automotive industry. For the design and optimization of car models, optimization algorithms usually work better if the initial searching points are within or close to a feasible domain. Therefore, finding a feasible design domain in advance is beneficial. A data mining technique, Iterative Dichotomizer 3 (ID3), is exploited in this paper to identify sets of reduced feasible design domains from the original design space. Within the reduced feasible domains, optimal designs can be efficiently obtained while releasing computational burden in iterations. A mathematical example is used to illustrate the proposed method. Then an industrial application about automotive structural optimization is employed to demonstrate the proposed methodology. The results show the proposed method’s potential in practical engineering.
Technical Paper

Coupled Game Theory-Based Kinematics Decision Making for Automatic Lane Change

2022-03-31
2022-01-7015
With the development of science and technology, breakthroughs have been made in the fields of intelligent algorithms, environmental perception, chip embedding, scene analysis, and multi-information fusion, which has prompted the wide attention of society, manufacturers and owners of autonomous vehicles. As one of the key issues in the research of autonomous vehicles, the research of vehicle lane change algorithm is of great significance to the safety of vehicle driving. This paper focuses on the conflict of interest between the lane-changing vehicle and the target lane vehicle in the fully autonomous driving environment, and proposes the method of coupling kinematics and game theory, so that when the vehicle is in the process of lane changing game, the lane-changing vehicle and the target lane vehicle can make decisions that are beneficial to the balance of interests of both sides.
Technical Paper

Bayesian Classifier Based Validation Method for Multivariate Systems

2016-04-05
2016-01-0284
Simulation models based design has become the common practice in automotive product development. Before applying these models in practice, model validation needs to be conducted to assess the validity of the models by comparing model predictions with experimental observations. In the validation process, it is vital to develop appropriate validation metrics for intended applications. When dealing with multivariate systems, comparisons between model predictions and test data with multiple responses would lead to conflicting decisions. To address this issue, this paper proposed a Bayesian classifier based validation method. With the consideration of both error rate and confidence in hypothesis testing, Bayesian classifier is developed for decision making. The process of validation is implemented on a real-world vehicle design case. The results show the proposed method’s potential in practical application.
Technical Paper

Automotive Hood Design Based on Machine Learning and Structural Design Optimization

2023-04-11
2023-01-0744
Nowadays, the automobile industry is booming and the number of vehicles is proliferating while the road traffic environment is also deteriorating. Therefore, attention should be paid to the protection of vulnerable road users in traffic accidents, such as pedestrians. In order to reduce the pedestrians’ head injury in collision accidents, in this study, the vehicle engine hood which responds significantly to head injuries was taken as the design object, so as to put forward a new optimization design process. The parameters of the hood’s main components, manufacturing materials and structural scheme were considered to carry out simultaneous optimization from various aspects such as pedestrian protection and hood stiffness.
Technical Paper

Automotive Crashworthiness Design Optimization Based on Efficient Global Optimization Method

2018-04-03
2018-01-1029
Finite element (FE) models are commonly used for automotive crashworthiness design. However, even with increasing speed of computers, the FE-based simulation is still too time-consuming when simulating the complex dynamic process such as vehicle crashworthiness. To improve the computational efficiency, the response surface model, as the surrogate of FE model, has been widely used for crashworthiness optimization design. Before introducing the surrogate model into the design optimization, the surrogate should satisfy the accuracy requirements. However, the bias of surrogate model is introduced inevitably. Meanwhile, it is also very difficult to decide how many samples are needed when building the high fidelity surrogate model for the system with strong nonlinearity. In order to solve the aforementioned problems, the application of a kind of surrogate optimization method called Efficient Global Optimization (EGO) is proposed to conduct the crashworthiness design optimization.
Technical Paper

Analytic Study of China’s Latest New Energy Vehicle Market Subsidies in Facing of the Carbon Neutrality Goal

2023-04-11
2023-01-0742
In recent years, aimed to promote the improvement of China’s new energy vehicle market, a series of incentive policies issued by the Chinese government: including the new energy vehicle subsidy policy, the double credit policy, and the charging pile infrastructure subsidy.Relevant research on new energy vehicle industry is mainly ground on multi-stage game, this paper employs multi-agent games theory, and summarizes the multi-agent decision-making optimization method in differential game based on dynamic programming and reinforcement learning. Then, in the context of new energy vehicles, research and improve the industrial policy of new energy vehicles through this method.A multi-agent differential game decision-making optimization framework is proposed. Complex multi-agent differential game decisions can be solved using the dynamic programming solver or deep reinforcement learning solver in this framework. Case studies and some observations will be given in the end.
Technical Paper

An Optimization Study of Occupant Restraint System for Different BMI Senior Women Protection in Frontal Impacts

2020-04-14
2020-01-0981
Accident statistics have shown that older and obese occupants are less adaptable to existing vehicle occupant restraint systems than ordinary middle-aged male occupants, and tend to have higher injury risk in vehicle crashes. However, the current research on injury mechanism of aging and obese occupants in vehicle frontal impacts is scarce. This paper focuses on the optimization design method of occupant restraint system parameters for specific body type characteristics. Three parameters, namely the force limit value of the force limiter in the seat belt, pretensioner preload of the seat belt and the proportionality coefficient of mass flow rate of the inflator were used for optimization. The objective was to minimize the injury risk probability subjected to constraints of occupant injury indicator values for various body regions as specified in US-NCAP frontal impact tests requirements.
Journal Article

An Integrated Validation Method for Nonlinear Multiple Curve Comparisons

2016-04-05
2016-01-0288
In automobile industry, computational models built to predict the performances of the prototype vehicles are on the rise. To assess the validity or predictive capability of the model for its intended usage, validation activities are conducted to compare computational model outputs with test measurements. Validation becomes difficult when dealing with dynamic systems which often involve multiple functional responses, and the complex characteristics need to be appropriately considered. Many promising data analysis tools and metrics were previously developed to handle data correlation and evaluate the errors in magnitude, phase shift, and shape. However, these methods show their limitations when dealing with nonlinear multivariate dynamic systems. In this paper, kernel function based projection is employed to transform the nonlinear data into linear space, followed by the regular principal component analysis (PCA) based data processing.
X