Refine Your Search

Topic

Search Results

Journal Article

μ-CT Investigation into the Impact of a Fuel-Borne Catalyst Additive on the Filtration Efficiency and Backpressure of Gasoline Particulate Filters

2022-01-18
Abstract An investigation into the pre-ashing of new gasoline particulate filters (GPFs) has demonstrated that the filtration efficiency of such filters can be improved by up to 30% (absolute efficiency improvement) when preconditioned using ash derived from a fuel-borne catalyst (FBC) additive. The additive is typically used in diesel applications to enable diesel particulate filter (DPF) regeneration and can be added directly into the fuel tank of the vehicle. This novel result was compared with ash derived from lube oil componentry, which has previously been shown to improve filtration efficiency in GPFs. The lube oil-derived ash utilized in this work improved the filtration efficiency of the GPF by −30%, comparable to the ash derived from the FBC additive.
Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

Water Droplet Collison and Erosion on High-Speed Spinning Wheels

2024-04-04
Abstract The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage.
Journal Article

WM-LES-Simulation of a Generic Intake Port Geometry

2018-06-18
Abstract Fluid mechanical design of the cylinder charge motion is an important part of an engine development. In the present contribution an intake port geometry is proposed that can be used as a test case for intake port flow simulations. The objective is to fill the gap between generic test cases, such as the backward facing step or the sudden expansion, and simulations of proprietary intake ports, which are barely accessible in the community. For the intake geometry measurement data was generated on a flow-through test bench and a wall-modeled LES-simulation using a hybrid RANS/LES approach for near-wall regions was conducted. The objective is to generate and analyze a reference flow case. Since mesh convergence studies are too costly for scale resolving approaches only one simulation was done, but on a very fine and mostly block-structured numerical mesh to achieve minimal numerical dissipation.
Journal Article

Visualization and Statistical Analysis of Passive Pre-chamber Knock in a Constant-volume Optical Engine

2023-10-20
Abstract This study investigates the behavior of pre-chamber knock in comparison to traditional spark ignition engine knock, using a modified constant-volume gasoline engine with an optically accessible piston. The aim is to provide a deeper understanding of pre-chamber knock combustion and its potential for mitigating knock. Five passive pre-chambers with different nozzle diameters, volumes, and nozzle numbers were tested, and nitrogen dilution was varied from 0% to 10%. The stochastic nature of knock behavior necessitates the use of statistical methods, leading to the proposal of a high-frequency band-pass filter (37–43 kHz) as an alternative pre-chamber knock metric. Pre-chamber knock combustion was found to exhibit fewer strong knock cycles compared to SI engines, indicating its potential for mitigating knock intensity. High-speed images revealed pre-chamber knock primarily occurs near the liner, where end-gas knock is typically exhibited.
Journal Article

Virtual Assessment of Automated Driving: Methodology, Challenges, and Lessons Learned

2019-12-18
Abstract Automated driving as one of the most anticipated technologies is approaching its market release in the near future. Since several years, the research in the automotive industry is largely focused on its development and presents well-engineered prototypes. The many aspects of this development do not only concern the function and its components itself, but also the proof of safety and assessment for its market release. It is clear that previous methods used for the release of Advanced Driver Assistance Systems are not applicable. In contrast to already released systems, automated driving is not restricted to a certain field of application in terms of driving scenarios it has to take action in. This results in an infeasible amount of required testing and unforeseeable scenarios the function can face throughout its lifetime. In this article, we show a scenario-based approach that promises to overcome those challenges.
Journal Article

Vibration-Induced Discomfort in Vehicles: A Comparative Evaluation Approach for Enhancing Comfort and Ride Quality

2024-03-14
Abstract This article introduces a methodology for conducting comparative evaluations of vibration-induced discomfort. The aim is to outline a procedure specifically focused on assessing and comparing the discomfort caused by vibrations. The article emphasizes the metrics that can effectively quantify vibration-induced discomfort and provides insights on utilizing available information to facilitate the assessment of differences observed during the comparisons. The study also addresses the selection of appropriate target scenarios and test environments within the context of the comparative evaluation procedure. A practical case study is presented, highlighting the comparison of wheel corner concepts in the development of new vehicle architectures. Currently, the evaluation criteria and difference thresholds available allow for comparative evaluations within a limited range of vehicle vibration characteristics.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
Journal Article

Vibration Analysis of the Bicycle-Car Model Considering Tire-Road Separation

2021-07-28
Abstract This article investigates the dynamics of non-smooth and nonlinear oscillations of a bicycle-car model, considering the tire-road separation. Road contact applies a non-holonomic constrain on the dynamics system that makes the equations of motion to be different under in-contact and off-contact conditions. The set of nonlinear equations of the system has been formulated based on nondimensionalization to minimize the number of parameters and generalize the results. To compare the quality of different suspensions in reducing the unpleasant no-contact conditions, we define a contact-free fraction indicator to measure the separation fraction time during a cycle of steady-state oscillation. An observation of frequency responses including vertical displacements, the pitch mode, and the domain of contact-free fraction of time has been investigated to clarify engineering design directions.
Journal Article

Vehicle Door Inner Frame Part Design with Knowledge-Based Engineering

2020-05-20
Abstract In this study, a computer-aided design (CAD) geometry system that is linked to each other to create a parametric form of the side rear door’s inner frame sheet piece on a passenger vehicle body in a Siemens NX environment was developed. The system was created in the NX CAD environment, using the program’s unique product development structure. The system was designed and modified for time-consuming parts. At the end of the study, the parameterized vehicle door geometries worked in the NX environment standardized the design process and accelerated the design works.
Journal Article

Validation of Kinetic Mechanisms against Various Ignition Delay Data and the Development of Ignition Delay Correlations for Ethanol, Natural Gas, and Primary Reference Fuel Blends under Homogeneous Charge Compression Ignition Conditions

2021-09-21
Abstract Homogeneous Charge Compression Ignition (HCCI) is a promising advanced combustion concept with high efficiencies and low emissions. Chemical kinetic mechanisms and ignition delay correlations (IDCs) are often applied to simulate HCCI combustion. However, a large number of mechanisms and correlations are not developed specifically for HCCI conditions, i.e., lean mixtures and usually with significant residual gas fractions (RGF). To address this issue, a two-part study is conducted. First, experimental ignition delay time (IDT) data from literature under typical HCCI conditions is collected. Then, thirteen widely applied mechanisms for ethanol, natural gas, and primary reference fuel (PRF) blends of isooctane and n-heptane are validated by running constant-volume simulations. Their performance and accuracy are evaluated. Second, the mechanism with the highest accuracy for each fuel is used to generate IDCs for HCCI conditions.
Journal Article

Using Numerical Simulation to Obtain Length of Constant Area Section in Scramjet Combustor

2020-03-16
Abstract Constant area section length downstream to the fuel injection point is a crucial dimension of scramjet duct geometry. It has a major contribution in creating the maximum effective pressure inside the combustor that is required for propulsion. The length is limited by the thermal choking phenomenon, which occurs when heat is added in a flow through constant area duct. As per theory, to avoid thermal choking the constant area section length depends upon the inlet conditions and the rate of heat addition. The complexity related to mixing and combustion process inside the supersonic stream makes it difficult to predict the rate of heat addition and in turn the length. Recent efforts of simulating the reacting flow inside scramjet combustors are encouraging and can be useful in this regard. The presented work attempts to use simulation results of scramjet combustion for predicting the constant area section length for a typical scramjet combustor.
Journal Article

Using Latent Heat Storage for Improving Battery Electric Vehicle Thermal Management System Efficiency

2023-12-20
Abstract One of the key problems of battery electric vehicles is the risk of severe range reduction in winter conditions. Technologies such as heat pump systems can help to mitigate such effects, but finding adequate heat sources for the heat pump sometimes can be a problem, too. In cold ambient conditions below −10°C and for a cold-soaked vehicle this can become a limiting factor. Storing waste heat or excess cold when it is generated and releasing it to the vehicle thermal management system later can reduce peak thermal requirements to more manageable average levels. In related architectures it is not always necessary to replace existing electric heaters or conventional air-conditioning systems. Sometimes it is more efficient to keep them and support them, instead. Accordingly, we show, how latent heat storage can be used to increase the efficiency of existing, well-established heating and cooling technologies without replacing them.
Journal Article

Use of Solar Photovoltaic Energy Systems in Department of Transportation Facilities: A Review of Practice and Preliminary Assessment for Virginia Department of Transportation

2022-01-28
Abstract Renewable energy sources provide an excellent opportunity for state departments of transportation (DOTs) to benefit from a dual use of land while providing flexible, resilient, affordable, and environmentally responsible modes of generation. Solar photovoltaic (PV) systems are particularly useful in this regard. This study presents a literature review on the types of solar project partnerships, application of solar PV systems by DOTs in the United States (U.S.), solar energy potential, energy policies, and incentives in Virginia. In addition, a feasibility assessment of installing solar PV systems at six (6) Virginia DOT (VDOT)-owned sites is presented. The review of the literature indicated that twenty state DOTs have implemented or are developing solar projects using their facilities. The feasibility assessment showed the benefits of installing solar PV systems at VDOT facilities.
Journal Article

Use of Artificial Neural Network to Develop Surrogates for Hydrotreated Vegetable Oil with Experimental Validation in Ignition Quality Tester

2024-02-01
Abstract This article presents surrogate mixtures that simulate the physical and chemical properties in the auto-ignition of hydrotreated vegetable oil (HVO). Experimental investigation was conducted in the Ignition Quality Tester (IQT) to validate the auto-ignition properties with respect to those of the target fuel. The surrogate development approach is assisted by artificial neural network (ANN) embedded in MATLAB optimization function. Aspen HYSYS is used to calculate the key physical and chemical properties of hundreds of mixtures of representative components, mainly alkanes—the dominant components of HVO, to train the learning algorithm. Binary and ternary mixtures are developed and validated in the IQT. The target properties include the derived cetane number (DCN), density, viscosity, surface tension, molecular weight, and volatility represented by the distillation curve. The developed surrogates match the target fuel in terms of ignition delay and DCN within 6% error range.
Journal Article

Usage of 2-Stroke Engines for Hybrid Vehicles

2022-03-24
Abstract As the automotive industry moves toward electrification, battery costs and vehicle range are two large issues that will delay this movement. These issues can be partially resolved through the use of series-hybrid vehicles, which can replace a portion of the batteries with a small engine that serves to recharge the battery. Given the size, weight, and operational constraints of this engine, a 2-stroke engine makes sense. Indeed, 2-stroke engines are currently being used for a number of applications including consumer products, small ground vehicles, boats, and drones. The technology has significantly improved to allow for reduced emissions and increased efficiency, especially through the use of direct injection. This article discusses the state of technology for 2-stroke engines and its application in series-hybrid vehicles. In particular, the use of a 2-stroke engine as a range extender provides significant benefit in range and cost over fully electric vehicles.
Journal Article

Unveiling the Potential of Hydrogen in a Downsized Gasoline Direct Injection Engine Performance and Emissions Experimental Study

2024-05-11
Abstract The transportation sector’s growing focus on addressing environmental and sustainable energy concerns has led to a pursuit of the decarbonization path. In this context, hydrogen emerges as a promising zero-carbon fuel. The ability of hydrogen fuel to provide reliable performance while reducing environmental impact makes it crucial in the quest for net zero targets. This study compares gasoline and hydrogen combustion in a single-cylinder boosted direct injection (DI) spark ignition engine under various operating conditions. Initially, the engine was run over a wide range of lambda values to determine the optimal operating point for hydrogen and demonstrate lean hydrogen combustion’s benefits over gasoline combustion. Furthermore, a load sweep test was conducted at 2000 rpm, and the performance and emission results were compared between gasoline and optimized hydrogen combustion. An in-depth analysis was conducted by varying fuel injection time and pressure.
Journal Article

Understanding the Origin of Cycle-to-Cycle Variation Using Large-Eddy Simulation: Similarities and Differences between a Homogeneous Low-Revving Speed Research Engine and a Production DI Turbocharged Engine

2018-12-14
Abstract A numerical study using large-eddy simulations (LES) to reproduce and understand sources of cycle-to-cycle variation (CCV) in spark-initiated internal combustion engines (ICEs) is presented. Two relevantly different spark-ignition (SI) units, that is, a homogeneous-charge slow-speed single-cylinder research unit (the transparent combustion chamber (TCC)-III, Engine 1) and a stratified-charge high-revving speed gasoline direct injection (GDI) (Engine 2) one, are analyzed in fired operations. Multiple-cycle simulations are carried out for both engines and LES results well reproduce the experimentally measured combustion CCV. A correlation study is carried out, emphasizing the decisive influence of the early flame period variability (1% of mass fraction burnt (MFB1)) on the entire combustion event in both ICEs. The focus is moved onto the early flame characteristics, and the crucial task to determine the dominant causes of its variability (if any) is undertaken.
Journal Article

Uncertainty Assessment of Octane Index Framework for Stoichiometric Knock Limits of Co-Optima Gasoline Fuel Blends

2018-10-25
Abstract This study evaluates the applicability of the Octane Index (OI) framework under conventional spark ignition (SI) and “beyond Research Octane Number (RON)” conditions using nine fuels operated under stoichiometric, knock-limited conditions in a direct injection spark ignition (DISI) engine, supported by Monte Carlo-type simulations which interrogate the effects of measurement uncertainty. Of the nine tested fuels, three fuels are “Tier III” fuel blends, meaning that they are blends of molecules which have passed two levels of screening, and have been evaluated to be ready for tests in research engines. These molecules have been blended into a four-component gasoline surrogate at varying volume fractions in order to achieve a RON rating of 98. The molecules under consideration are isobutanol, 2-butanol, and diisobutylene (which is a mixture of two isomers of octene). The remaining six fuels were research-grade gasolines of varying formulations.
Journal Article

Ultraviolet-Initiated Curing of Natural Fiber-Reinforced Acrylated Epoxidized Soybean Oil Composites

2021-06-02
Abstract Sustainable practices are taking precedence across many industries, as evident from their shift towards the use of environmentally responsible materials, such as natural fiber-reinforced acrylated epoxidized soybean oil (NF-AESO). However, due to the lower reactivity of AESO, the curing reaction usually requires higher temperatures and longer curing time (e.g., 150°C for 6-12 h), thus making the entire process unsustainable. In this study, we demonstrate the potential power of photons towards manufacturing NF-AESO composites in a sustainable manner at room temperature (RT) within 10 min. Two photoinitiators, i.e., the 2,2-dimethoxy phenylacetophenone (DMPA) and 1-hydroxycyclohexyl phenyl ketone (HCPK), were evaluated and compared with the thermal initiator, i.e., tert-butyl perbenzoate (TBPB). Based on the mechanical performance of the AESOs, the photoinitiation system for NF-AESO was optimized.
X