Refine Your Search

Topic

Search Results

Journal Article

Wheel Chock Key Design Elements and Geometrical Profile for Truck Vehicle Restraint

2018-06-06
Abstract Wheel chocks are rather simple compliant mechanisms for stabilizing vehicles at rest. However, chocks must be carefully designed given the complex interaction between the chock and the tire/suspension system. Despite their importance for safety, literature is surprisingly limited in terms of what makes a wheel chock efficient. Using simple but reliable quasi-static mechanical models, this study identifies mechanical requirements that help to avoid a number of failure modes associated with many existing wheel chocks. Given that chock grounding is not always possible, a chock’s maximum restraining capacity is only obtained when the wheel is completely supported by the chock. A generic chock profile is proposed to achieve this objective while mitigating undesirable failure modes. The profile is based on fundamental mechanical principles and no assumption is made on the load interaction between the chock and the wheel.
Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

Vibration Mitigation of Commercial Vehicle Active Tandem Axle Suspension System

2022-01-24
Abstract A tandem axle suspension is an important system to the ride comfort and vehicle stability of and road damage experience from commercial vehicles. This article introduces an investigation into the use of a controlled active tandem axle suspension, which for the first time enables more effective control using two fuzzy logic controllers (FLC). The proposed controllers compute the actuator forces based on system outputs: displacements, velocities, and accelerations of movable parts of tandem axle suspension as inputs to the controllers, in order to achieve better ride comfort and vehicle stability and extend the lifetime of road surface than the conventional passive suspension. A mathematical model of a six-degree-of-freedom (6-DOF) tandem axle suspension system is derived and simulated using Matlab/Simulink software.
Journal Article

Vibration Analysis of the Bicycle-Car Model Considering Tire-Road Separation

2021-07-28
Abstract This article investigates the dynamics of non-smooth and nonlinear oscillations of a bicycle-car model, considering the tire-road separation. Road contact applies a non-holonomic constrain on the dynamics system that makes the equations of motion to be different under in-contact and off-contact conditions. The set of nonlinear equations of the system has been formulated based on nondimensionalization to minimize the number of parameters and generalize the results. To compare the quality of different suspensions in reducing the unpleasant no-contact conditions, we define a contact-free fraction indicator to measure the separation fraction time during a cycle of steady-state oscillation. An observation of frequency responses including vertical displacements, the pitch mode, and the domain of contact-free fraction of time has been investigated to clarify engineering design directions.
Journal Article

Vehicle State Estimation Based on Unscented Kalman Filtering and a Genetic Algorithm

2020-09-22
Abstract A critical component of vehicle dynamic control systems is the accurate and real-time knowledge of the vehicle’s key states and parameters when running on the road. Such knowledge is also essential for vehicle closed-loop feedback control. Vehicle state and parameter estimation has gradually become an important way to soft-sense some variables that are difficult to measure directly using general sensors. In this work, a seven degrees-of-freedom (7-DOF) nonlinear vehicle dynamics model is established, where consideration of the Magic formula tire model allows us to estimate several vehicle key states using a hybrid algorithm containing an unscented Kalman filter (UKF) and a genetic algorithm (GA). An estimator based on the hybrid algorithm is compared with an estimator based on just a UKF. The results show that the proposed estimator has higher accuracy and fewer computation requirements than the UKF estimator.
Journal Article

Vehicle Stability Control through Optimized Coordination of Active Rear Steering and Differential Driving/Braking

2018-07-05
Abstract In this article, a hierarchical coordinated control algorithm for integrating active rear steering and driving/braking force distribution (ARS+D/BFD) was presented. The upper-level control was synthesized to generate the required rear steering angle and external yaw moment by using a sliding-mode controller. In the lower-level controller, a control allocation algorithm considering driving/braking actuators and tire forces constraints was designed to assign the desired yaw moment to the four wheels. To this end, an optimization problem including several equality and inequality constraints were defined and solved analytically. Finally, computer simulation results suggest that the proposed hierarchical control scheme was able to help to achieve substantial enhancements in handling performance and stability.
Journal Article

Vehicle Aerodynamic Optimization: On a Combination of Adjoint Method and Efficient Global Optimization Algorithm

2019-04-26
Abstract This article presents a workflow for aerodynamic optimization of vehicles that for the first time combines the adjoint method and the efficient global optimization (EGO) algorithm in order to take advantage of both the gradient-based and gradient-free methods for aerodynamic optimization problems. In the workflow, the adjoint method is first applied to locate the sensitive surface regions of the baseline vehicle with respect to the objective functions and define a proper design space with reasonable design variables. Then the EGO algorithm is applied to search for the optimal site in the design space based on the expected improvement (EI) function. Such workflow has been applied to minimize the aerodynamic drag for a mass-produced electric vehicle. With the help of STAR-CCM+ and its adjoint solver, sensitive surface regions with respect to the aerodynamic drag are first located on the vehicle.
Journal Article

Understanding Real-World Variability of Hybrid Electric Vehicle Fuel Economy

2020-08-11
Abstract The variability of fuel economy (FE) is of significant importance as that of average FE to realize FE benefits of hybrid electric vehicles (HEVs) consistently by all users in the real world. Over the years, majority of the research has been focused on improving average FE overlooking the variability. Although in recent years few studies have been focused on the reduction of FE variability, no study has been concentrated to understand why certain design has lower FE variability as that of others. This article provides a detailed analysis to decipher the reasons for the FE variability in the real world. This study considered the optimum designs based on two established design optimization methodologies considering Toyota Prius non-plug-in hybrid as a base vehicle. This study analyses the impacts of the parameters of driving patterns and the operation of powertrains on FE variability.
Journal Article

Ultraviolet-Initiated Curing of Natural Fiber-Reinforced Acrylated Epoxidized Soybean Oil Composites

2021-06-02
Abstract Sustainable practices are taking precedence across many industries, as evident from their shift towards the use of environmentally responsible materials, such as natural fiber-reinforced acrylated epoxidized soybean oil (NF-AESO). However, due to the lower reactivity of AESO, the curing reaction usually requires higher temperatures and longer curing time (e.g., 150°C for 6-12 h), thus making the entire process unsustainable. In this study, we demonstrate the potential power of photons towards manufacturing NF-AESO composites in a sustainable manner at room temperature (RT) within 10 min. Two photoinitiators, i.e., the 2,2-dimethoxy phenylacetophenone (DMPA) and 1-hydroxycyclohexyl phenyl ketone (HCPK), were evaluated and compared with the thermal initiator, i.e., tert-butyl perbenzoate (TBPB). Based on the mechanical performance of the AESOs, the photoinitiation system for NF-AESO was optimized.
Journal Article

Two-Speed Transmission Gear Shift Process Analysis and Optimization Using Genetic Algorithm

2020-01-16
Abstract Electric Vehicle (EV) equipped with two-speed transmission has benefit in improving dynamic performance and saving battery consumption. However, during gear shift process, torque interruption and shift impact may lead to a bad shift quality. This work investigates gear shift process in an Automated Manual Transmission (AMT) configuration-based two-speed transmission. First of all, a typical gear shift process is analyzed. Parameters like motor speed, shift force, motor torque change rate, and speed difference between synchronizer and target engage gear are all included to find the relationships with shift duration. Then vehicle jerk is introduced as a criterion to evaluate shift impact. Besides, a comprehensive shift control strategy is developed. While keeping the output torque at wheels unchanged, the shift strategy also improved motor working efficiency after gear shift.
Journal Article

Transient Response of Turbocharged Compression Ignition Engine under Different Load Conditions

2023-07-26
Abstract In urban roads the engine speed and the load vary suddenly and frequently, resulting in increased exhaust emissions. In such operations, the effect of air injection technique to access the transient response of the engine is of great interest. The effectiveness of air injection technique in improving the transient response under speed transient is investigated in detail [1]; however, it is not evaluated for the load transients. Load step demand of the engine is another important event that limits the transient response of the turbocharger. In the present study, response of a heavy-duty turbocharged diesel engine is investigated for different load conditions. Three cases of load transients are considered: constant load, load magnitude variation, and load scheduling. Air injection technique is simulated and after optimization of injection pressure based on orifice diameter, its effect on the transient response is presented.
Journal Article

Topological Optimization of Non-Pneumatic Unique Puncture-Proof Tire System Spoke Design for Tire Performance

2023-07-18
Abstract Non-pneumatic tires (NPTs) have been widely used due to their advantages of no occurrence of puncture-related problems, no need of air maintenance, low rolling resistance, and improvement of passenger comfort due to its better shock absorption. It has a variety of applications as in earthmovers, planetary rover, stair-climbing vehicles, and the like. Recently, the unique puncture-proof tire system (UPTIS) NPT has been introduced for passenger vehicles segment. The spoke design of NPT-UPTIS has a significant effect on the overall working performance of tire. Optimized tire performance is a crucial factor for consumers and original equipment manufacturers (OEMs). Hence to optimize the spoke design of NPT-UPTIS spoke, the top and bottom curve of spoke profile have been described in the form of analytical equations. A generative design concept has been introduced to create around 50,000 spoke profiles.
Journal Article

Tire-Road Separation Time Reduction by an Adaptive Proportional-Integral-Derivative Controller Utilizing Particle Swarm Optimization Algorithm

2021-05-05
Abstract The article examines quarter-car dynamics with the possible separation of its tire from the road. A set of nondimensionalized differential equations has been proposed to minimize the involved parameters. Time and frequency response investigation of the system has been analyzed insightfully considering tire-road separation. To measure the separation of the tire, a time fraction index is defined, indicating the fraction of separation time in a cycle at steady-state conditions. Minimizing the index is assumed as the objective of the optimized system. An actuator is applied to the vehicle suspension in parallel with the mainspring and damper of the suspension. Particle Swarm Optimization (PSO) is used to properly tune a Proportional-Integral-Derivative (PID) controller for the active suspension system excited by a harmonic excitation.
Journal Article

Tire-Road Friction Coefficient Estimation Method Design for Intelligent Tires Equipped with Three-Axis Accelerometer

2021-05-05
Abstract Intelligent tires, as an emerging technology, have great potential for tire-road contact information identification and new vehicle active safety system design. In this article, a tire-road friction coefficient estimation method is proposed based on intelligent tires application with three-axis accelerometer. At first, a finite element tire model with an accelerometer is established using ABAQUS platform. Accelerometer body frame transformation is considered during the tire rotation. Subsequently, the contact patch length is determined according to the peak of the longitudinal acceleration profile. Meanwhile, tire lateral deflection is calculated from the tire lateral acceleration. By curve fitting the lateral deflection model with least square method, tire lateral force and the aligning moment are derived and then the friction coefficient is estimated via brush model.
Journal Article

Tire Side Force Characteristics with the Coupling Effect of Vertical Load and Inflation Pressure

2018-11-09
Abstract The tire vertical load and inflation pressure have great influence on tire steady- and non-steady-state characteristics and, consequently, on the vehicle handling and stability. The objective of this article is to reveal the coupling effect of tire vertical load and inflation pressure on tire characteristics and then introduce an improved UniTire side force model including such coupling effect through experimental and theoretical analysis. First, the influence of the tire vertical load and inflation pressure on the tire characteristics is presented through experimental analysis. Second, the theoretical tire cornering stiffness and lateral relaxation length model are introduced to study the underlying mechanism of the coupling effect. Then, an improved UniTire side force model including the coupling effect of tire vertical load and inflation pressure is derived. Finally, the proposed improved UniTire side force model is validated through tire steady-state and transient data.
Journal Article

Tire Deformation Modelling for High-Speed Open-Wheel Aerodynamic Investigations

2021-04-07
Abstract This article introduces a finite element (FE) approach to determine tire deformation and its effect on open-wheel race car aerodynamics at high vehicle velocities. In recent literature tire deformation was measured optically. Combined loads like accelerating at a corner exit are difficult to reproduce in wind tunnels and require several optical devices to measure the tire deformation. In contrast, an FE approach is capable of determining the tire deformation in combined load states accurately. Additionally, the temperature influence on tire deformation is investigated. The FE tire model was validated using three-dimensional (3D) scan measurements; stiffness measurements in the vertical, lateral, and longitudinal direction; and the change of loaded radius with speed at different loads, respectively. The deformed shape of the tire of the FE model was used in a computational fluid dynamics (CFD) simulation.
Journal Article

Time-Optimal Coordination Control for the Gear-Shifting Process in Electric-Driven Mechanical Transmission (Dog Clutch) without Impacts

2020-06-23
Abstract Torque interruption and shift jerk are the two main problems in the gear-shifting process of electric-driven mechanical transmission (EMT). This article gives a general solution of the time-optimal coordination control to eliminate the impacts between the sleeve and the gear ring in the shortest time in analytic form. The designed coordination control is proposed to the gear-shifting process with the sleeve and the gear ring on the same shaft but can be extended to satisfy different gear-shifting processes. To obtain this method, the gear-shifting dynamic model is first built according to the two different motion sources, the drive motor and shift motor. The time-optimal dual synchronization control and position control for the drive motor and shift motor are then solved, respectively.
Journal Article

Time Domain Analysis of Ride Comfort and Energy Dissipation Characteristics of Automotive Vibration Proportional–Integral–Derivative Control

2024-02-05
Abstract A time domain analysis method of ride comfort and energy dissipation characteristics is proposed for automotive vibration proportional–integral–derivative (PID) control. A two-degrees-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined, and the Routh stability criterion method was introduced to assess the impact of PID control on vehicle stability. The PID control parameters are tuned using the differential evolution algorithm, and to improve the algorithm’s adaptive ability, an adaptive operator is introduced, so that the mutation factor of differential evolution algorithm can change with the number of iterations.
Journal Article

Three-Dimensional In-Depth Dynamic Analysis of a Ground Vehicle Experiencing a Tire Blowout

2023-08-31
Abstract To investigate the effect of a tire blowout (TBO) on the dynamics of the vehicle comprehensively, a three-dimensional full-vehicle multibody mathematical model is developed and integrated with the nonlinear Dugoff’s tire model. In order to ensure the validity of the developed model, a series of standard maneuvers is carried out and the resulting response is verified using the high-fidelity MSC Adams package. Consequently, the in-plane, as well as out-of-plane dynamics of the vehicle, is extensively examined through a sequence of TBO scenarios with various blown tires and during both rectilinear and curvilinear motion. Moreover, the different possible inputs from the driver, the road bank angle, and the antiroll bar have been accounted for. The results show that the dynamic behavior of the vehicle is tremendously affected both in-plane and out-of-plane and its directional stability is degraded.
Journal Article

Threading the Needle—Overtaking Framework for Multi-agent Autonomous Racing

2022-01-06
Abstract Multi-agent autonomous racing still remains a largely unsolved research challenge. The high-speed and close proximity situations that arise in multi-agent autonomous racing present an ideal condition to design algorithms which trade off aggressive overtaking maneuvers and minimize the risk of collision with the opponent. In this article we study a two-vehicle autonomous racing setup and present AutoPass—a novel framework for overtaking in a multi-agent setting. AutoPass uses the structure of an automaton to break down the complex task of overtaking into sub-maneuvers that balance overtaking likelihood and risk with safety of the ego vehicle. We present real-world implementation of 1/10-scale autonomous racing cars to demonstrate the effectiveness of AutoPass for the overtaking task.
X