Refine Your Search

Topic

Search Results

Journal Article

μ-CT Investigation into the Impact of a Fuel-Borne Catalyst Additive on the Filtration Efficiency and Backpressure of Gasoline Particulate Filters

2022-01-18
Abstract An investigation into the pre-ashing of new gasoline particulate filters (GPFs) has demonstrated that the filtration efficiency of such filters can be improved by up to 30% (absolute efficiency improvement) when preconditioned using ash derived from a fuel-borne catalyst (FBC) additive. The additive is typically used in diesel applications to enable diesel particulate filter (DPF) regeneration and can be added directly into the fuel tank of the vehicle. This novel result was compared with ash derived from lube oil componentry, which has previously been shown to improve filtration efficiency in GPFs. The lube oil-derived ash utilized in this work improved the filtration efficiency of the GPF by −30%, comparable to the ash derived from the FBC additive.
Journal Article

Willans Line-Based Equivalent Consumption Minimization Strategy for Charge-Sustaining Hybrid Electric Vehicle

2021-09-09
Abstract Energy management strategies for charge-sustaining hybrid electric vehicles reduce fuel consumption and maintain battery pack state of charge while meeting driver output power demand. The equivalent consumption minimization strategy is a real-time energy management strategy that makes use of an equivalence ratio to quantify electric power consumption in terms of fuel power consumption. The magnitude of the equivalence ratio determines the hybrid electric vehicle mode of operation and influences the ability of the energy management strategy to reduce fuel consumption as well as maintain the battery pack state of charge. The equivalent consumption minimization strategy in this article uses three Willans line models, which have an associated marginal efficiency and constant offset, to model the performance in the hybrid electric vehicle controller.
Journal Article

What Can User Typologies Tell Us about Carsickness Criticality in Future Mobility Systems

2022-02-15
Abstract Car manufacturers are continuously improving passenger comfort by advancing technologies including highly automated driving. Before the broad introduction of automated driving, specific human factors regarding passenger comfort must be considered, including motion sickness. Therefore, the identification of the frequency of motion sickness and associated factors in the population is needed to extrapolate the effects for future mobility systems. We conducted three surveys between 2015 and 2020, asking people questions about their experience with motion sickness in cars. Based on the responses of 1165 participants, gender and age showed a strong influence on the self-reported frequency of motion sickness. For deeper analysis, a logistic order regression model was used to estimate the frequency of motion sickness for different user typologies.
Journal Article

Water Body Survey, Inspection, and Monitoring Using Amphibious Hybrid Unmanned Aerial Vehicle

2021-02-04
Abstract Water quality monitoring is needed for the effective management of water resources. Periodic sampling and regular inspection/analysis allow one to classify water and identify changes or trends in water quality over time. This article presents a novel concept of an Amphibious Hybrid Unmanned Aerial Vehicle (AHUAV) that can operate in air and water for rapid water sampling, real-time water quality analysis, and water body management. A methodology using the developed AHUAV system for water body management has also been proposed for an easier and effective way of monitoring water bodies using advanced drone technologies. Using drones for water body management can be a cost-effective and efficient way of carrying out regular inspections and continual monitoring.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
Journal Article

Vertical Takeoff and Landing Aircraft, Vertical Takeoff and Landing Ground Effects

2020-08-20
Abstract The ground-effect problems of loss of thrust and fountain-effect instabilities are quantified. Experiments to control and augment ground-effect lift and stability are presented, including jet momentum reflection and fountain redirection using various types of internal and external underbody ventral strakes. By strategically designing the vertical takeoff and landing (VTOL) ventral surface, reflection of the impinging fountain momentum is possible so that instead of losing 10% thrust while in ground-effect, remarkably, thrust is augmented 10% or more to a considerable height above the ground, in addition to stabilizing random pitch and roll moments caused by fountain instability.
Journal Article

Utilization of Man Power, Increment in Productivity by Using Lean Management in Kitting Area of Engine Manufacturing Facility - A Case Study

2018-08-08
Abstract The project of lean management is implemented in General Motors India Private Limited, Pune, India plant. The aim of the project is to improve manpower utilization by removing seven types of wastes using lean management system in kitting process. Lean manufacturing or management is the soul of Just-In-Time philosophy and is not new in Automobile manufacture sector where it born. Kitting area is analogs to the modern supermarket where required components, parts, consumables, subassemblies are kept in bins. These bins are placed in racks so that choosing right part at right time can be achieved easily. Video recording, in-person observation, feedback from online operators and other departments such as maintenance, control, supply chain etc. are taken. It is observed that the work content performed by current strength of operators can be performed by less number of operators. After executing this project, it was possible to reduce one operator and increase manpower utilization.
Journal Article

Using Latent Heat Storage for Improving Battery Electric Vehicle Thermal Management System Efficiency

2023-12-20
Abstract One of the key problems of battery electric vehicles is the risk of severe range reduction in winter conditions. Technologies such as heat pump systems can help to mitigate such effects, but finding adequate heat sources for the heat pump sometimes can be a problem, too. In cold ambient conditions below −10°C and for a cold-soaked vehicle this can become a limiting factor. Storing waste heat or excess cold when it is generated and releasing it to the vehicle thermal management system later can reduce peak thermal requirements to more manageable average levels. In related architectures it is not always necessary to replace existing electric heaters or conventional air-conditioning systems. Sometimes it is more efficient to keep them and support them, instead. Accordingly, we show, how latent heat storage can be used to increase the efficiency of existing, well-established heating and cooling technologies without replacing them.
Journal Article

Usage of 2-Stroke Engines for Hybrid Vehicles

2022-03-24
Abstract As the automotive industry moves toward electrification, battery costs and vehicle range are two large issues that will delay this movement. These issues can be partially resolved through the use of series-hybrid vehicles, which can replace a portion of the batteries with a small engine that serves to recharge the battery. Given the size, weight, and operational constraints of this engine, a 2-stroke engine makes sense. Indeed, 2-stroke engines are currently being used for a number of applications including consumer products, small ground vehicles, boats, and drones. The technology has significantly improved to allow for reduced emissions and increased efficiency, especially through the use of direct injection. This article discusses the state of technology for 2-stroke engines and its application in series-hybrid vehicles. In particular, the use of a 2-stroke engine as a range extender provides significant benefit in range and cost over fully electric vehicles.
Journal Article

Understanding Subsidies to Achieve Diesel Powertrain Financial Parity for Heavy-Duty Fuel Cell Electric Vehicles

2022-12-07
Abstract The development of a long-term sustainable hydrogen energy economy for commercial vehicle transportation will need to overcome key critical technical and logistics considerations in the near term. As compared to zero-emission powertrains, fossil-fuel-based powertrains provide mission flexibility and high uptime at a comparatively low total cost of ownership (TCO). While the incumbent carbon-intensive powertrains suffer from poor efficiency and are not sustainable to support global climate change initiatives in transportation decarbonization, techno-economic challenges continue to create complex barriers to the large-scale displacement of these with highly electrified powertrains architectures. This article specifically addresses opportunities that well-targeted subsidies would afford in achieving fuel cell electric powertrain financial parity with diesel powertrains in heavy-duty trucks (HDTs).
Journal Article

Uncertainty Analysis of High-Frequency Noise in Battery Electric Vehicle Based on Interval Model

2019-02-01
Abstract The high-frequency noise issue is one of the most significant noise, vibration, and harshness problems, particularly in battery electric vehicles (BEVs). The sound package treatment is one of the most important approaches toward solving this problem. Owing to the limitations imposed by manufacturing error, assembly error, and the operating conditions, there is often a big difference between the actual values and the design values of the sound package components. Therefore, the sound package parameters include greater uncertainties. In this article, an uncertainty analysis method for BEV interior noise was developed based on an interval model to investigate the effect of sound package uncertainty on the interior noise of a BEV. An interval perturbation method was formulated to compute the uncertainty of the BEV’s interior noise.
Journal Article

Turbulent Flow Pressure Losses in Gasoline Particulate Filters

2019-08-19
Abstract Gasoline Particulate Filter (GPF) technology is the key method of meeting the new regulations for particulate matter emissions from gasoline cars. Computer-Aided Engineering is widely used for the design of such systems; thus the development of accurate models for GPFs is crucial. Most existing pressure loss models require experimental calibration of several parameters. These experiments are performed at room temperatures, or on an engine test bench, where gas properties cannot be fully controlled. This article presents pressure loss measurements for clean GPF cores performed with uniform airflow and temperatures up to 680°C. The flow regime in GPF is shown to be different to that in the Diesel Particulate Filters (DPF) due to high flow rates and temperatures. Therefore, most of the existing models are not suitable for design of the new generation of aftertreatment devices. To separate pressure loss contribution from different sources, unplugged filter cores are tested.
Journal Article

Transition to Electric Vehicles in China: Implications for Total Cost of Ownership and Cost to Society

2020-07-08
Abstract China is driving the transition away from internal combustion engine vehicles (ICEVs) to plug-in electric vehicles (PEVs, including plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs)) to address its pressing energy security and environmental pollution problems. The recent enactment of the dual-credit scheme mandate will compensate for the phase out of the subsidy program, while ostensibly shifting the burden of filling in the cost gap between PEVs and ICEVs from the government to the automakers (though in practice to car buyers).
Journal Article

Toward a Machine Learning Development Lifecycle for Product Certification and Approval in Aviation

2022-05-26
Abstract This article presents a new machine learning (ML) development lifecycle which will constitute the core of the new aeronautical standard on ML called AS6983, jointly being developed by working group WG-114/G34 of EUROCAE and SAE. The article also presents a survey of several existing standards and guidelines related to ML in aeronautics, automotive, and industrial domains by comparing and contrasting their scope, purpose, and results.
Journal Article

Toward Privacy-Aware Traceability for Automotive Supply Chains

2021-07-14
Abstract The lack of traceability in today’s supply-chain system for auto components makes counterfeiting a significant problem leading to millions of dollars of lost revenue every year and putting the lives of customers at risk. Traditional solutions are usually built upon hardware such as radio-frequency identification (RFID) tags and barcodes, and these solutions cannot stop attacks from supply-chain (insider) parties themselves as they can simply duplicate products in their local database. This industry-academia collaborative work studies the benefits and challenges associated with the use of distributed ledger (or blockchain) technology toward preventing counterfeiting in the presence of malicious supply-chain parties. We illustrate that the provision of a distributed and append-only ledger jointly governed by supply-chain parties themselves makes permissioned blockchains such as Hyperledger Fabric a promising approach toward mitigating counterfeiting.
Journal Article

Throat Unit Collector Modeling of Gasoline Particulate Filter Performance

2019-07-26
Abstract The wide application of Gasoline Direct Injection (GDI) engines and the increasingly stringent Particulate Matter (PM) and Particulate Number (PN) regulations make Gasoline Particulate Filters (GPFs) with high filtration efficiency and low pressure drop highly desirable. However, due to the specifics of GDI operation and GDI PM, the design of these filters is even more challenging as compared to their diesel counterparts. Computational Fluid Dynamics (CFD) studies have been shown to be an effective way to investigate filter performance. In particular, our previous two-dimensional (2D) CFD study explicated the pore size and pore-size distribution effects on GPF filtration efficiency and pressure drop. The “throat unit collector” model developed in this study furthers this work in order to characterize the GPF wall microstructure more precisely.
Journal Article

Three-Dimensional Thermal Study on Lithium-Ion Batteries in a Hybrid Aircraft: Numerical and Experimental Investigations

2020-10-19
Abstract The range of an aircraft is determined by the amount of energy that its batteries can store. Today, larger batteries are used to increase the range of electric vehicles, although energy efficiency decreases as the weight of the vehicles increases. Among the elements, lithium (Li) is the lightest and has the highest electrochemical potential. Therefore, the use of Li-ion batteries is recommended for hybrid aircraft. In addition, Li-ion batteries are the most common type of battery that is used in portable electronic devices such as smartphones, tablets, and laptops. However, Li-ion batteries may explode due to temperature. Therefore, the thermal analysis of Li-ion batteries was investigated both experimentally and numerically. Li-ion batteries were connected in series (the number is 9). Noboru’s theory of heat generation was discussed in the estimation of energy data.
Journal Article

Three Case Studies on Small Uncrewed Aerial Systems Near Midair Collisions with Aircraft: An Evidence-Based Approach for Using Objective Uncrewed Aerial Systems Detection Technology

2023-06-14
Abstract Small uncrewed aircraft systems (sUAS) growth continues for recreational and commercial applications. By 2025, the Federal Aviation Administration (FAA) predicts the sUAS fleet to number nearly 2.4 million units. As sUAS operations expand within the National Airspace System (NAS), so too does the probability of near midair collisions (NMACs) between sUAS and aircraft. Currently, the primary means of recognizing sUAS NMACs rely on pilots to visually spot and evade conflicting sUAS. Pilots may report such encounters to the FAA as UAS Sighting Reports. Sighting reports are of limited value as they are highly subjective and dependent on the pilot to accurately estimate range and altitude information. Moreover, they do not account for NMACs that an aircrew member does not spot.
Journal Article

Threat Identification and Defense Control Selection for Embedded Systems

2020-08-18
Abstract Threat identification and security analysis have become mandatory steps in the engineering design process of high-assurance systems, where successful cyberattacks can lead to hazardous property damage or loss of lives. This article describes a novel approach to perform security analysis on embedded systems modeled at the architectural level. The tool, called Security Threat Evaluation and Mitigation (STEM), associates threats from the Common Attack Pattern Enumeration and Classification (CAPEC) library with components and connections and suggests potential defense patterns from the National Institute of Standards and Technology (NIST) Special Publication (SP) 800-53 security standard. This article also provides an illustrative example based on a drone package delivery system modeled in AADL.
Journal Article

Thermohydrodynamic Modeling of Squeeze Film Dampers in High-Speed Turbomachinery

2018-04-07
Abstract This work develops a comprehensive thermohydrodynamic (THD) model for high-speed squeeze film dampers (SFDs) in the presence of lubricant inertia effects. Firstly, the generalized expression for Reynolds equation is developed. Additionally, in order to reduce the complexity of the hydrodynamic equations, an average radial viscosity is defined and integrated into the equations. Subsequently, an inertial correction to the pressure is incorporated by using a first-order perturbation technique to represent the effect of lubricant inertia on the hydrodynamic pressure distribution. Furthermore, a thermal model, including the energy equation, the Laplace heat conduction equations in the surrounding solids (i.e. the journal and the bush), and the thermal boundary conditions at the interfaces is constructed. Moreover, the system of partial differential hydrodynamic and thermal equations is simultaneously solved by using an iterative numerical algorithm.
X