Refine Your Search

Topic

Search Results

Journal Article

μ-CT Investigation into the Impact of a Fuel-Borne Catalyst Additive on the Filtration Efficiency and Backpressure of Gasoline Particulate Filters

2022-01-18
Abstract An investigation into the pre-ashing of new gasoline particulate filters (GPFs) has demonstrated that the filtration efficiency of such filters can be improved by up to 30% (absolute efficiency improvement) when preconditioned using ash derived from a fuel-borne catalyst (FBC) additive. The additive is typically used in diesel applications to enable diesel particulate filter (DPF) regeneration and can be added directly into the fuel tank of the vehicle. This novel result was compared with ash derived from lube oil componentry, which has previously been shown to improve filtration efficiency in GPFs. The lube oil-derived ash utilized in this work improved the filtration efficiency of the GPF by −30%, comparable to the ash derived from the FBC additive.
Journal Article

When and How to Apply Automatic Emergency Brakes Based on Risk Perception and Professional Driver Emergency Braking Behavior

2023-07-26
Abstract The key issues of automatic emergency braking (AEB) control algorithm are when and how to brake. This article proposes an AEB control algorithm that integrates risk perception (RP) and emergency braking characteristics of professional drivers for rear-end collision avoidance. Using the formulated RP by time to collision (TTC) and time headway (THW), the brake trigger time can be determined. Based on the professional driver fitting (PDF) characteristic, the brake pattern can be developed. Through MATLAB/Simulink simulation platform, the European New Car Assessment Programme (Euro-NCAP) test scenarios are used to verify the proposed control algorithm. The simulation results show that compared with the TTC control algorithm, PDF control algorithm, and the integrated PDF and TTC control algorithm, the proposed integrated PDF and RP control algorithm has the best performance, which can not only ensure safety and brake comfort, but also improve the road resource utilization rate.
Journal Article

Wheel Chock Key Design Elements and Geometrical Profile for Truck Vehicle Restraint

2018-06-06
Abstract Wheel chocks are rather simple compliant mechanisms for stabilizing vehicles at rest. However, chocks must be carefully designed given the complex interaction between the chock and the tire/suspension system. Despite their importance for safety, literature is surprisingly limited in terms of what makes a wheel chock efficient. Using simple but reliable quasi-static mechanical models, this study identifies mechanical requirements that help to avoid a number of failure modes associated with many existing wheel chocks. Given that chock grounding is not always possible, a chock’s maximum restraining capacity is only obtained when the wheel is completely supported by the chock. A generic chock profile is proposed to achieve this objective while mitigating undesirable failure modes. The profile is based on fundamental mechanical principles and no assumption is made on the load interaction between the chock and the wheel.
Journal Article

Water Droplet Collison and Erosion on High-Speed Spinning Wheels

2024-04-04
Abstract The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
Journal Article

Vibration Mitigation of Commercial Vehicle Active Tandem Axle Suspension System

2022-01-24
Abstract A tandem axle suspension is an important system to the ride comfort and vehicle stability of and road damage experience from commercial vehicles. This article introduces an investigation into the use of a controlled active tandem axle suspension, which for the first time enables more effective control using two fuzzy logic controllers (FLC). The proposed controllers compute the actuator forces based on system outputs: displacements, velocities, and accelerations of movable parts of tandem axle suspension as inputs to the controllers, in order to achieve better ride comfort and vehicle stability and extend the lifetime of road surface than the conventional passive suspension. A mathematical model of a six-degree-of-freedom (6-DOF) tandem axle suspension system is derived and simulated using Matlab/Simulink software.
Journal Article

Vibration Analysis of the Bicycle-Car Model Considering Tire-Road Separation

2021-07-28
Abstract This article investigates the dynamics of non-smooth and nonlinear oscillations of a bicycle-car model, considering the tire-road separation. Road contact applies a non-holonomic constrain on the dynamics system that makes the equations of motion to be different under in-contact and off-contact conditions. The set of nonlinear equations of the system has been formulated based on nondimensionalization to minimize the number of parameters and generalize the results. To compare the quality of different suspensions in reducing the unpleasant no-contact conditions, we define a contact-free fraction indicator to measure the separation fraction time during a cycle of steady-state oscillation. An observation of frequency responses including vertical displacements, the pitch mode, and the domain of contact-free fraction of time has been investigated to clarify engineering design directions.
Journal Article

Vertical and Longitudinal Coupling Control Approach for Semi-active Suspension System Using Mechanical Hardware-in-the-Loop Simulation

2021-03-12
Abstract When the vehicle is under braking condition in the longitudinal motion, the vehicle body will tilt due to the inertial force in motion. A high amplitude will result in uncomfortable feelings of the occupant, such as nervousness or dizziness. To solve the problem, this article presents an adaptive damping system (ADS), which combines the vehicle anti-pitch compensation control with the mixed skyhook (SH) and acceleration-driven-damper (ADD) control algorithm. This ADS can not only improve the vibration effect of the vertical motion for the vehicle but also consider the longitudinal motion of the vehicle body. In addition, a new damper mechanical hardware-in-the-loop test bench is built to verify the effectiveness of the algorithm.
Journal Article

Vehicle Stability Control through Optimized Coordination of Active Rear Steering and Differential Driving/Braking

2018-07-05
Abstract In this article, a hierarchical coordinated control algorithm for integrating active rear steering and driving/braking force distribution (ARS+D/BFD) was presented. The upper-level control was synthesized to generate the required rear steering angle and external yaw moment by using a sliding-mode controller. In the lower-level controller, a control allocation algorithm considering driving/braking actuators and tire forces constraints was designed to assign the desired yaw moment to the four wheels. To this end, an optimization problem including several equality and inequality constraints were defined and solved analytically. Finally, computer simulation results suggest that the proposed hierarchical control scheme was able to help to achieve substantial enhancements in handling performance and stability.
Journal Article

Vehicle Dynamics Control Using Model Predictive Control Allocation Combined with an Adaptive Parameter Estimator

2020-07-08
Abstract Advanced passenger vehicles are complex dynamic systems that are equipped with several actuators, possibly including differential braking, active steering, and semi-active or active suspensions. The simultaneous use of several actuators for integrated vehicle motion control has been a topic of great interest in literature. To facilitate this, a technique known as control allocation (CA) has been employed. CA is a technique that enables the coordination of various actuators of a system. One of the main challenges in the study of CA has been the representation of actuator dynamics in the optimal CA problem (OCAP). Using model predictive control allocation (MPCA), this problem has been addressed. Furthermore, the actual dynamics of actuators may vary over the lifespan of the system due to factors such as wear, lack of maintenance, etc. Therefore, it is further required to compensate for any mismatches between the actual actuator parameters and those used in the OCAP.
Journal Article

Vehicle Braking Performance Improvement via Electronic Brake Booster

2024-02-10
Abstract Throughout the automobile industry, the electronic brake boost technologies have been widely applied to support the expansion of the using range of the driver assist technologies. The electronic brake booster (EBB) supports to precisely operate the brakes as necessary via building up the brake pressure faster than the vacuum brake booster. Therefore, in this article a novel control strategy for the EBB based on fuzzy logic control (FLC) is developed and studied. The configuration of the EBB is established and the system model including the permanent magnet synchronous motor (PMSM), a two-stage reduction transmission (gears and a ball screw), a servo body, reaction disk, and the hydraulic load are modeled by MATLAB/Simulink. The load-dependent friction has been compensated by using Karnopp friction model. Due to the strong nonlinearity on the EBB components and the load-dependent friction, FLC has been used for the control algorithm.
Journal Article

Utilization of Man Power, Increment in Productivity by Using Lean Management in Kitting Area of Engine Manufacturing Facility - A Case Study

2018-08-08
Abstract The project of lean management is implemented in General Motors India Private Limited, Pune, India plant. The aim of the project is to improve manpower utilization by removing seven types of wastes using lean management system in kitting process. Lean manufacturing or management is the soul of Just-In-Time philosophy and is not new in Automobile manufacture sector where it born. Kitting area is analogs to the modern supermarket where required components, parts, consumables, subassemblies are kept in bins. These bins are placed in racks so that choosing right part at right time can be achieved easily. Video recording, in-person observation, feedback from online operators and other departments such as maintenance, control, supply chain etc. are taken. It is observed that the work content performed by current strength of operators can be performed by less number of operators. After executing this project, it was possible to reduce one operator and increase manpower utilization.
Journal Article

Using an Inerter-Based Suspension to Reduce Carbody Flexible Vibration and Improve Riding-Comfort

2023-02-01
Abstract The riding-comfort of high-speed trains affects the travel experience of passengers, and the lightweight design technology of the carbody increases the flexible vibration and reduces passenger comfort. To this end, a vertical dynamics model of railway vehicles is established to demonstrate the potential of using passive inerter-based suspensions to reduce the flexible vibration of the carbody and improve riding-comfort. According to the characteristics of the inerter component, an appropriate inerter-based suspension is applied to the railway vehicle to reduce low-frequency resonance. The sum of the comfort indexes of the three reference points of the carbody is optimized as the objective function to improve the passenger comfort of the whole vehicle. The results reveal that the inerter-based suspension applied to the primary or secondary suspension has different effects on vehicle vibration.
Journal Article

Uncertainty in Gravimetric Analysis Required for LEV III Light-Duty Vehicle PM Emission Measurements

2018-06-20
Abstract With the reduction in PM emission standards for light duty vehicles to 3 mg/mi for current Federal and California standards and subsequently to 1 mg/mi in 2025 for California, the required PM measurements are approaching the detection limits of the gravimetric method. A “filter survey” was conducted with 11 laboratories, representing industry, agencies, research institutes, and academic institutions to analyze the accuracy of the current gravimetric filter measurement method under controlled conditions. The reference filter variability, measured within a given day over periods as short as an hour, ranged from 0.61 μg to 2 μg to 5.0 μg for the 5th, 50th, 95th percentiles (n > 40,000 weights, 317 reference objects), with a laboratory average of 2.5 μg.
Journal Article

U.S. Light-Duty Vehicle Air Conditioning Fuel Use and Impact of Solar/Thermal Control Technologies

2018-12-11
Abstract To reduce fuel consumption and carbon dioxide (CO2) emissions from mobile air conditioning (A/C) systems, “U.S. Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards” identified solar/thermal technologies such as solar control glazings, solar reflective paint, and active and passive cabin ventilation in an off-cycle credit menu. National Renewable Energy Laboratory (NREL) researchers developed a sophisticated analysis process to calculate U.S. light-duty A/C fuel use that was used to assess the impact of these technologies, leveraging thermal and vehicle simulation analysis tools developed under previous U.S. Department of Energy projects. Representative U.S. light-duty driving behaviors and weighting factors including time-of-day of travel, trip duration, and time between trips were characterized and integrated into the analysis.
Journal Article

Turbulent Flow Pressure Losses in Gasoline Particulate Filters

2019-08-19
Abstract Gasoline Particulate Filter (GPF) technology is the key method of meeting the new regulations for particulate matter emissions from gasoline cars. Computer-Aided Engineering is widely used for the design of such systems; thus the development of accurate models for GPFs is crucial. Most existing pressure loss models require experimental calibration of several parameters. These experiments are performed at room temperatures, or on an engine test bench, where gas properties cannot be fully controlled. This article presents pressure loss measurements for clean GPF cores performed with uniform airflow and temperatures up to 680°C. The flow regime in GPF is shown to be different to that in the Diesel Particulate Filters (DPF) due to high flow rates and temperatures. Therefore, most of the existing models are not suitable for design of the new generation of aftertreatment devices. To separate pressure loss contribution from different sources, unplugged filter cores are tested.
Journal Article

Transient Response of Turbocharged Compression Ignition Engine under Different Load Conditions

2023-07-26
Abstract In urban roads the engine speed and the load vary suddenly and frequently, resulting in increased exhaust emissions. In such operations, the effect of air injection technique to access the transient response of the engine is of great interest. The effectiveness of air injection technique in improving the transient response under speed transient is investigated in detail [1]; however, it is not evaluated for the load transients. Load step demand of the engine is another important event that limits the transient response of the turbocharger. In the present study, response of a heavy-duty turbocharged diesel engine is investigated for different load conditions. Three cases of load transients are considered: constant load, load magnitude variation, and load scheduling. Air injection technique is simulated and after optimization of injection pressure based on orifice diameter, its effect on the transient response is presented.
Journal Article

Transient Operation and Over-Dilution Mitigation for Low-Pressure EGR Systems in Spark-Ignition Engines

2018-09-17
Abstract Low-Pressure cooled Exhaust Gas Recirculation (LP-cEGR) is proven to be an effective technology for fuel efficiency improvement in turbocharged spark-ignition (SI) engines. Aiming to fully exploit the EGR benefits, new challenges are introduced that require more complex and robust control systems and strategies. One of the most important restrictions of LP-cEGR is the transient response, since long air-EGR flow paths introduce significant transport delays between the EGR valve and the cylinders. High dilution generally increases efficiency, but can lead to cycle-by-cycle combustion variation. Especially in SI engines, higher-than-requested EGR dilution may lead to combustion instabilities and misfires. Considering the long EGR evacuation period, one of the most challenging transient events is throttle tip-out, where the engine operation shifts from a high-load point with high dilution tolerance to a low-load point where EGR tolerance is significantly reduced.
Journal Article

Trajectory Tracking Control for Autonomous Driving Vehicle with Obstacle Avoidance: Modeling, Simulation, and Performance Analysis

2019-11-16
Abstract The external driving environment of an autonomous driving vehicle is complex and changeable. In this article, the trajectory tracking control with obstacle avoidance based on model predictive control was presented. Specifically, double-level control scheme by controlling the front steering angle was used in our research, and the double level is composed of the high level of model predictive controller for local trajectory planning and low level of model predictive controller for trajectory tracking. At high level, the local trajectory planner based on the point-mass model was designed. Then, at low level, the linear time-varying vehicle dynamics model was presented, and the trajectory tracking controller was proposed considering control variable, control increment, and output constraint. Finally, the trajectory tracking performance was tested in co-simulation environment with CarSim and Simulink, and the tracking errors were analyzed.
Journal Article

Trajectory Planning for Connected and Automated Vehicles: Cruising, Lane Changing, and Platooning

2021-10-22
Abstract Autonomy and connectivity are considered among the most promising technologies to improve safety and mobility and reduce fuel consumption and travel delay in transportation systems. In this paper, we devise an optimal control-based trajectory planning model that can provide safe and efficient trajectories for the subject vehicle while incorporating platoon formation and lane-changing decisions. We embed this trajectory planning model in a simulation framework to quantify its fuel efficiency and travel time reduction benefits for the subject vehicle in a dynamic traffic environment. Specifically, we compare and analyze the statistical performance of different controller designs in which lane changing or platooning may be enabled, under different values of time (VoTs) for travelers.
X