Refine Your Search

Topic

Search Results

Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

Vehicle Dynamics Control Using Model Predictive Control Allocation Combined with an Adaptive Parameter Estimator

2020-07-08
Abstract Advanced passenger vehicles are complex dynamic systems that are equipped with several actuators, possibly including differential braking, active steering, and semi-active or active suspensions. The simultaneous use of several actuators for integrated vehicle motion control has been a topic of great interest in literature. To facilitate this, a technique known as control allocation (CA) has been employed. CA is a technique that enables the coordination of various actuators of a system. One of the main challenges in the study of CA has been the representation of actuator dynamics in the optimal CA problem (OCAP). Using model predictive control allocation (MPCA), this problem has been addressed. Furthermore, the actual dynamics of actuators may vary over the lifespan of the system due to factors such as wear, lack of maintenance, etc. Therefore, it is further required to compensate for any mismatches between the actual actuator parameters and those used in the OCAP.
Journal Article

Vehicle Aerodynamic Optimization: On a Combination of Adjoint Method and Efficient Global Optimization Algorithm

2019-04-26
Abstract This article presents a workflow for aerodynamic optimization of vehicles that for the first time combines the adjoint method and the efficient global optimization (EGO) algorithm in order to take advantage of both the gradient-based and gradient-free methods for aerodynamic optimization problems. In the workflow, the adjoint method is first applied to locate the sensitive surface regions of the baseline vehicle with respect to the objective functions and define a proper design space with reasonable design variables. Then the EGO algorithm is applied to search for the optimal site in the design space based on the expected improvement (EI) function. Such workflow has been applied to minimize the aerodynamic drag for a mass-produced electric vehicle. With the help of STAR-CCM+ and its adjoint solver, sensitive surface regions with respect to the aerodynamic drag are first located on the vehicle.
Journal Article

Validation of Crush Energy Calculation Methods for Use in Accident Reconstructions by Finite Element Analysis

2018-10-04
Abstract The crush energy is a key parameter to determine the delta-V in accident reconstructions. Since an accurate car crush profile can be obtained from 3D scanners, this research aims at validating the methods currently used in calculating crush energy from a crush profile. For this validation, a finite element (FE) car model was analyzed using various types of impact conditions to investigate the theory of energy-based accident reconstruction. Two methods exist to calculate the crush energy: the work based on the barrier force and the work based on force calculated by the vehicle acceleration times the vehicle mass. We show that the crush energy calculated from the barrier force was substantially larger than the internal energy calculated from the FE model. Whereas the crush energy calculated from the vehicle acceleration was comparable to the internal energy of the FE model.
Journal Article

Using Latent Heat Storage for Improving Battery Electric Vehicle Thermal Management System Efficiency

2023-12-20
Abstract One of the key problems of battery electric vehicles is the risk of severe range reduction in winter conditions. Technologies such as heat pump systems can help to mitigate such effects, but finding adequate heat sources for the heat pump sometimes can be a problem, too. In cold ambient conditions below −10°C and for a cold-soaked vehicle this can become a limiting factor. Storing waste heat or excess cold when it is generated and releasing it to the vehicle thermal management system later can reduce peak thermal requirements to more manageable average levels. In related architectures it is not always necessary to replace existing electric heaters or conventional air-conditioning systems. Sometimes it is more efficient to keep them and support them, instead. Accordingly, we show, how latent heat storage can be used to increase the efficiency of existing, well-established heating and cooling technologies without replacing them.
Journal Article

Usage of 2-Stroke Engines for Hybrid Vehicles

2022-03-24
Abstract As the automotive industry moves toward electrification, battery costs and vehicle range are two large issues that will delay this movement. These issues can be partially resolved through the use of series-hybrid vehicles, which can replace a portion of the batteries with a small engine that serves to recharge the battery. Given the size, weight, and operational constraints of this engine, a 2-stroke engine makes sense. Indeed, 2-stroke engines are currently being used for a number of applications including consumer products, small ground vehicles, boats, and drones. The technology has significantly improved to allow for reduced emissions and increased efficiency, especially through the use of direct injection. This article discusses the state of technology for 2-stroke engines and its application in series-hybrid vehicles. In particular, the use of a 2-stroke engine as a range extender provides significant benefit in range and cost over fully electric vehicles.
Journal Article

Understanding the Influence of Seat Belt Geometries on Belt-to-Pelvis Angle Can Help Prevent Submarining

2022-04-13
Abstract The first objective of this study, addressed in Part 1, is to use finite element (FE) human body modeling (HBM) to evaluate the tangent of the Belt-to-Pelvis angle (tanθBTP) as a submarining predictor in frontal crashes for occupants in reclined seats. The second objective, addressed in Part 2, is to use this predictor to assess two technical solutions for reducing submarining risks for two different occupant anthropometries. In Part 1, tanθBTP (the lap belt penetration from the anterior superior iliac spine [ASIS] in the abdominal direction) was evaluated in impact simulations with varying seat belt anchor positions. Sled simulations with a 56 km/h full-frontal crash pulse were performed with the SAFER HBM morphed to the anthropometry of a small female and average male. A correlation was found between the submarining predictor and submarining.
Journal Article

Understanding the Impact of Standardized SAE Waveform Parameter Variation on Artificial Lightning Plasma, Specimen Loading, and Composite Material Damage

2020-02-18
Abstract Previous works have established strategies to model artificial test lightning plasma with specific waveform parameters and use the predicted plasma behavior to estimate test specimen damage. To date no computational works have quantified the influence of varying the waveform parameters on the predicted plasma behavior and resulting specimen damage. Herein test standard Waveform B has been modelled and the waveform parameters of “waveform peak,” “rise time,” and “time to reach the post-peak value” have been varied. The plasma and specimen behaviors have been modelled using the Finite Element (FE) method (a Magnetohydrodynamic FE multiphysics model for the plasma, a FE thermal-electric model for the specimen). For the test arrangements modelled herein, it has been found that “peak current” is the key parameter influencing plasma properties and specimen damage.
Journal Article

Understanding Conductive Layer Deposits: Test Method Development for Lubricant Performance Testing for Hybrid and Electric Vehicle Applications

2022-11-07
Abstract Advances in hybrid vehicles and electric vehicles (EV) are creating a need for a new generation of lubricants and new lubricant performance tests. Copper corrosion is one prominent concern for hybrid vehicles and EVs and is routinely assessed using a coupon test. This is characterized as metal dissolution, a surface tarnish, or a corrosion layer where a corrosion product remains on the surface and is characterized by a qualitative visual rating. This deficiency does not provide insight into the nature of the corrosion deposit. In an electric drive unit, there are multiple sources of the electric potential present, which can significantly alter the formation of a corrosion deposit which is not assessed in the coupon tests. The formation of a conductive corrosion deposit can result in catastrophic failure of the electric drive unit, either through direct shorting of the motor winding or failure of the power electronics.
Journal Article

Uncertainty Analysis of High-Frequency Noise in Battery Electric Vehicle Based on Interval Model

2019-02-01
Abstract The high-frequency noise issue is one of the most significant noise, vibration, and harshness problems, particularly in battery electric vehicles (BEVs). The sound package treatment is one of the most important approaches toward solving this problem. Owing to the limitations imposed by manufacturing error, assembly error, and the operating conditions, there is often a big difference between the actual values and the design values of the sound package components. Therefore, the sound package parameters include greater uncertainties. In this article, an uncertainty analysis method for BEV interior noise was developed based on an interval model to investigate the effect of sound package uncertainty on the interior noise of a BEV. An interval perturbation method was formulated to compute the uncertainty of the BEV’s interior noise.
Journal Article

Two-Speed Transmission Gear Shift Process Analysis and Optimization Using Genetic Algorithm

2020-01-16
Abstract Electric Vehicle (EV) equipped with two-speed transmission has benefit in improving dynamic performance and saving battery consumption. However, during gear shift process, torque interruption and shift impact may lead to a bad shift quality. This work investigates gear shift process in an Automated Manual Transmission (AMT) configuration-based two-speed transmission. First of all, a typical gear shift process is analyzed. Parameters like motor speed, shift force, motor torque change rate, and speed difference between synchronizer and target engage gear are all included to find the relationships with shift duration. Then vehicle jerk is introduced as a criterion to evaluate shift impact. Besides, a comprehensive shift control strategy is developed. While keeping the output torque at wheels unchanged, the shift strategy also improved motor working efficiency after gear shift.
Journal Article

Transition to Electric Vehicles in China: Implications for Total Cost of Ownership and Cost to Society

2020-07-08
Abstract China is driving the transition away from internal combustion engine vehicles (ICEVs) to plug-in electric vehicles (PEVs, including plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs)) to address its pressing energy security and environmental pollution problems. The recent enactment of the dual-credit scheme mandate will compensate for the phase out of the subsidy program, while ostensibly shifting the burden of filling in the cost gap between PEVs and ICEVs from the government to the automakers (though in practice to car buyers).
Journal Article

Torque-Vectoring Control of Autonomous Vehicles Considering Optimization of Vehicle Handling Characteristics

2021-03-18
Abstract Distributed drive electric vehicles can apply the four-wheel differential drive to change the vehicle handling performance, which can make the connected and automated vehicles (CAV) more controllable. This article proposes a hierarchical scheme of the torque-vectoring controller (TVC), whose key parameters affecting the control objective are optimized from the human-vehicle closed-loop simulation test. First, the radial basis function (RBF)-based adaptive second-order sliding mode control (RASOSMC) for additional yaw moment generation is designed in the upper layer of the controller. The lower layer is the torque distribution strategy that takes into consideration the minimization of the tire load and the control error of the additional yaw moment and yaw rate. Afterward, the longitudinal and lateral driver model with the adaptive correction of preview time is established.
Journal Article

Torque Distribution Control Strategy of Electric Wheel Loader with Multiple Drive Motors Based on Optimal Motor Efficiency

2023-03-15
Abstract Wheel loaders are widely used in construction projects. In order to reduce pollution and energy consumption, major wheel loader manufacturers are developing electric powertrain technology. Our main research goal is to reduce the energy consumption of a pure electric loader. This study is intended to build a vehicle simulation model of a multiple drive motor electric loader. According to the common working conditions and empirical formulas of the loader, the simulation data of the electric loader are calculated. The torque distribution control strategy based on the optimal efficiency of the motor is designed for the multiple drive motor electric loader and is compared with the equal proportion distribution control and the axle load ratio distribution control through simulation analysis. The simulation results show that the proposed torque distribution control strategy based on motor optimal efficiency can reduce energy consumption by 7–12%.
Journal Article

Topological Optimization of Non-Pneumatic Unique Puncture-Proof Tire System Spoke Design for Tire Performance

2023-07-18
Abstract Non-pneumatic tires (NPTs) have been widely used due to their advantages of no occurrence of puncture-related problems, no need of air maintenance, low rolling resistance, and improvement of passenger comfort due to its better shock absorption. It has a variety of applications as in earthmovers, planetary rover, stair-climbing vehicles, and the like. Recently, the unique puncture-proof tire system (UPTIS) NPT has been introduced for passenger vehicles segment. The spoke design of NPT-UPTIS has a significant effect on the overall working performance of tire. Optimized tire performance is a crucial factor for consumers and original equipment manufacturers (OEMs). Hence to optimize the spoke design of NPT-UPTIS spoke, the top and bottom curve of spoke profile have been described in the form of analytical equations. A generative design concept has been introduced to create around 50,000 spoke profiles.
Journal Article

Tire-Road Friction Coefficient Estimation Method Design for Intelligent Tires Equipped with Three-Axis Accelerometer

2021-05-05
Abstract Intelligent tires, as an emerging technology, have great potential for tire-road contact information identification and new vehicle active safety system design. In this article, a tire-road friction coefficient estimation method is proposed based on intelligent tires application with three-axis accelerometer. At first, a finite element tire model with an accelerometer is established using ABAQUS platform. Accelerometer body frame transformation is considered during the tire rotation. Subsequently, the contact patch length is determined according to the peak of the longitudinal acceleration profile. Meanwhile, tire lateral deflection is calculated from the tire lateral acceleration. By curve fitting the lateral deflection model with least square method, tire lateral force and the aligning moment are derived and then the friction coefficient is estimated via brush model.
Journal Article

Tire Deformation Modelling for High-Speed Open-Wheel Aerodynamic Investigations

2021-04-07
Abstract This article introduces a finite element (FE) approach to determine tire deformation and its effect on open-wheel race car aerodynamics at high vehicle velocities. In recent literature tire deformation was measured optically. Combined loads like accelerating at a corner exit are difficult to reproduce in wind tunnels and require several optical devices to measure the tire deformation. In contrast, an FE approach is capable of determining the tire deformation in combined load states accurately. Additionally, the temperature influence on tire deformation is investigated. The FE tire model was validated using three-dimensional (3D) scan measurements; stiffness measurements in the vertical, lateral, and longitudinal direction; and the change of loaded radius with speed at different loads, respectively. The deformed shape of the tire of the FE model was used in a computational fluid dynamics (CFD) simulation.
Journal Article

Time-Optimal Coordination Control for the Gear-Shifting Process in Electric-Driven Mechanical Transmission (Dog Clutch) without Impacts

2020-06-23
Abstract Torque interruption and shift jerk are the two main problems in the gear-shifting process of electric-driven mechanical transmission (EMT). This article gives a general solution of the time-optimal coordination control to eliminate the impacts between the sleeve and the gear ring in the shortest time in analytic form. The designed coordination control is proposed to the gear-shifting process with the sleeve and the gear ring on the same shaft but can be extended to satisfy different gear-shifting processes. To obtain this method, the gear-shifting dynamic model is first built according to the two different motion sources, the drive motor and shift motor. The time-optimal dual synchronization control and position control for the drive motor and shift motor are then solved, respectively.
Journal Article

Thermomechanical Fracture Failure Analysis of a Heavy-Duty Diesel Engine Cylinder Liner through Performance Analysis and Finite Element Modeling

2020-10-02
Abstract Diesel engines include systems for cooling, lubrication, and fuel injection and contain a variety of components. A malfunction in any of the engine systems or the presence of any faulty element influences engine performance and deteriorates its components. This research is concerned with the untimely appearance of vital cracks in the liners of a turbocharged heavy-duty Diesel engine. To find the root causes for premature failure, rigorous examinations through visual observations, material characterization, and metallographic investigations are performed. These include Scanning Electron Microscope (SEM) and Energy-Dispersive Spectroscopy (EDS), fracture mechanics analysis, and performance examination, which are also followed by Finite Element Moldings. To find the proper remedy to resolve the problem, drawing a precise and reliable picture of the engine’s operating conditions is required.
Journal Article

Thermo-Mechanical Coupled Analysis-Based Design of Ventilated Brake Disc Using Genetic Algorithm and Particle Swarm Optimization

2021-08-24
Abstract The brake discs are subjected to thermal load due to sliding by the brake pad and fluctuating loads because of the braking load. This combined loading problem requires simulation using coupled thermo-mechanical analysis for design evaluation. This work presents a combined thermal and mechanical finite element analysis (FEA) and evolutionary optimization-based novel approach for estimating the optimal design parameters of the ventilated brake disc. Five parameters controlling the design: inboard plate thickness, outboard plate thickness, vane height, effective offset, and center hole radius were considered, and simulation runs were planned. A total of 27 brake disc designs with design parameters as recommended by the Taguchi method (L27) were modeled using SolidWorks, and the FEA simulation runs were carried out using the ANSYS thermal and structural analysis tool.
X