Refine Your Search

Topic

Search Results

Journal Article

Vulnerability of FlexRay and Countermeasures

2019-05-23
Abstract The importance of in-vehicle network security has increased with an increase in automated and connected vehicles. Hence, many attacks and countermeasures have been proposed to secure the controller area network (CAN), which is an existent in-vehicle network protocol. At the same time, new protocols-such as FlexRay and Ethernet-which are faster and more reliable than CAN have also been proposed. European OEMs have adopted FlexRay as a control network that can perform the fundamental functions of a vehicle. However, there are few studies regarding FlexRay security. In particular, studies on attacks against FlexRay are limited to theoretical studies or simulation-based experiments. Hence, the vulnerability of FlexRay is unclear. Understanding this vulnerability is necessary for the application of countermeasures and improving the security of future vehicles. In this article, we highlight the vulnerability of FlexRay found in the experiments conducted on a real FlexRay network.
Journal Article

Using a Dual-Layer Specification to Offer Selective Interoperability for Uptane

2020-08-24
Abstract This work introduces the concept of a dual-layer specification structure for standards that separate interoperability functions, such as backward compatibility, localization, and deployment, from those essential to reliability, security, and functionality. The latter group of features, which constitute the actual standard, make up the baseline layer for instructions, while all the elements required for interoperability are specified in a second layer, known as a Protocols, Operations, Usage, and Formats (POUF) document. We applied this technique in the development of a standard for Uptane [1], a security framework for over-the-air (OTA) software updates used in many automobiles. This standard is a good candidate for a dual-layer specification because it requires communication between entities, but does not require a specific format for this communication.
Journal Article

The Effect of Equal-Channel Angular Pressing Processing on Microstructural Evolution, Hardness Homogeneity, and Mechanical Properties of Pure Aluminum

2020-07-25
Abstract Equal-channel angular pressing (ECAP) is among the most applicable severe plastic deformation processes used to fabricate ultrafine-grained materials with superior mechanical properties. In this work, a commercial purity aluminum has been processed via ECAP process up to four passes. The influence of ECAP routes (A and Bc) on the mechanical properties of the material and its grain size was investigated. Microstructural observations of the as-annealed and the rods processed via ECAP were undertaken using optical microscopy. Hardness profiles and contour maps of sections cut perpendicularly and parallel to the load direction were assessed to investigate the effect of ECAP processing on the hardness distribution across the deformed rods. Compressive properties of the rods were also examined. In addition, digital images correlation was used to display the stress distribution along the longitudinal section of the processed sample during the compression test.
Journal Article

TOC

2023-02-28
Abstract TOC
Journal Article

TOC

2023-08-03
Abstract TOC
Journal Article

Study of the Grain Growth Kinetics and Its Influence on Mechanical Behavior of Plain Carbon Steel

2022-08-18
Abstract In the present study, the mechanical performances of plain carbon steel were explored based on the grain growth behavior. In the first step, the samples were normalized at different temperatures ranging from 900°C to 1100°C for 30, 60, 100, 150, and 200 min, respectively. In order to measure the grain size, the planimetric technique of Jeffries was used based on the optical micrographs taken for each sample. The mechanical properties of each grain such as hardness, elongation, yield, and tensile strength were studied, depending on the conventional methods. Experimental results showed that the increase in both heating temperature and holding time enhances grain growth, while the growth rate decreases with increasing time. The initial grain size and proportionality constant were calculated at 950°C, where K = 2.26 μm2/min and D 0 = 25.09 μm. Moreover, a significant increase in strength and hardness was observed with a decrease in grain size.
Journal Article

Study of Temperature Distribution and Parametric Optimization during FSW of AA6082 Using Statistical Approaches

2019-02-01
Abstract In this article, Al-Mg-Si-Mn alloy (AA6082) is butt joined by employing friction stir welding (FSW). The mechanical and metallurgical properties of joints are analyzed by conducting tensile and microhardness testing, respectively. To measure the temperature at different locations, eight thermocouples (L-shaped k-type) are placed at equal distance from the centerline. Least square method attempts to calculate the temperature at the centerline of joints. The process parameters are also optimized using Taguchi’s five-level experimental design. The optimum process parameters are determined, employing ultimate tensile strength (UTS) as a response parameter. A statistical test “analysis of variance” is used to check the adequacy of the model. It has been observed that rotational speed and feed rate are the predominant factors for UTS and microhardness.
Journal Article

Similarity between Damaging Events Using Pseudo Damage Density

2020-11-10
Abstract Load-time histories can be used to predict vehicle durability by calculating the pseudo damage (PD) through one or more load paths for a vehicle. When the dynamics of each load path are taken into account, a PD density (damage per distance traveled) can be expressed for each load path for any given road input to a vehicle. When damage is expressed as a PD density for a segment of road, separable damaging events can be identified using the PD density in all load paths of interest for a vehicle. However, it would be beneficial if events with similar damage characteristics can be identified and grouped together to provide an additional level of durability information. The objective of this work is to develop a similarity test for identifying the similarity/dissimilarity between multiple damaging events using the damage characteristics in multiple load paths. The damage characteristics for events are defined using the distribution of PD density samples for all known load paths.
Journal Article

Separable and Standard Monte Carlo Simulation of Linear Dynamic Systems Using Combined Approximations

2019-01-25
Abstract Reliability analysis of a large-scale system under random dynamic loads can be a very time-consuming task since it requires repeated studies of the system. In many engineering problems, for example, wave loads on an offshore platform, the excitation loads are defined using a power spectral density (PSD) function. For a given PSD function, one needs to generate many time histories to make sure the excitation load is modeled accurately. Global and local approximation methods are available to predict the system response efficiently. Each way has their advantages and shortcomings. The combined approximations (CA) method is an efficient method, which combines the advantages of local and global approximations. This work demonstrates two methodologies that utilize CA to reduce the cost of crude or separable Monte Carlo simulation (MCS) of linear dynamic systems when the excitation loads are defined using PSD functions.
Journal Article

Semiconductor Safety Concepts for the Power Distribution of Automated Driving

2019-12-18
Abstract Automated driving is a highly complex idea. It involves mechanics, electronics and chemistry, artificial intelligence, human intelligence and high computational efforts. Apart from those aspects, the automated intelligence is run using electricity. An unintended interrupt can easily lead to a hazard. Therefore, a highly reliable power distribution has to be developed. This work focuses on the reliability calculation of such a power distribution concept. It points out what is required and will be in future such that the algorithms for the path planning and control are running in a safe environment according to the ISO 26262 standard.
Journal Article

Safety Verification of RSS Model-Based Variable Focus Function Camera for Autonomous Vehicle

2022-02-25
Abstract Today, as the spread of vehicles equipped with autonomous driving functions increases, accidents caused by autonomous vehicles are also increasing. Therefore, issues regarding safety and reliability of autonomous vehicles are emerging. Various studies have been conducted to secure the safety and reliability of autonomous vehicles, and the application of the International Organization for Standardization (ISO) 26262 standard for safety and reliability improvement and the importance of verifying the safety of autonomous vehicles are increasing. Recently, Mobileye proposed an RSS model called Responsibility Sensitive Safety, which is a mathematical model that presents the standardization of safety guarantees of the minimum requirements that all autonomous vehicles must meet. In this article, the RSS model that ensures safety and reliability was derived to be suitable for variable focus function cameras that can cover the cognitive regions of radar and lidar with a single camera.
Journal Article

Safety Distance Determination Methods for Hydrogen Refueling Stations: A Review

2022-12-30
Abstract Hydrogen refueling stations (HRSs) have been widely built in many countries to meet the requirements of the rapidly developing hydrogen-fueled vehicle industry. Safety distances are key parameters for HRS designs, but the codes and standards used for determining safety distances vary in different countries. The two main methods for determining the safety distances for HRSs are the consequence-based method and the quantitative risk assessment (QRA)-based method. This article reviews the two methods to show state-of-the-art research on determining safety distances globally. This review shows that the harm criteria in the consequence models differ greatly in the literature and the QRA-based method is a more reasonable way to determine the HRS safety distances. In addition, the QRA models lack reliable frequency data and uniform risk acceptance criteria. Future standardized QRA models should be developed with unified regulations and standards for hydrogen infrastructure.
Journal Article

Response of Austempering Heat Treatment on Microstructure and Mechanical Property in Different Zones of As-Welded Ductile Iron (DI)

2018-05-08
Abstract Sound ductile iron (DI) welded joints were performed using developed coated electrode and optimized welding parameters including post weld heat treatment (PWHT).Weldments consisting of weld metal, partially melted zone (PMZ), heat affected zone (HAZ) and base metal were austenitized at 900 °C for 2 hour and austempered at 300 °C and 350 °C for three different holding time (1.5 hour, 2 hour and 2.5 hour). In as-weld condition, microstructures of weld metal and PMZ show ledeburitic carbide and alloyed pearlite, but differ with their amount. Whereas microstructure of HAZ shows pearlite with some ledeburitic carbide and base metal shows only ferrite.
Journal Article

Residual Stresses and Plastic Deformation in Self-Pierce Riveting of Dissimilar Aluminum-to-Magnesium Alloys

2018-05-08
Abstract In this work, the complex relationship between deformation history and residual stresses in a magnesium-to-aluminum self-pierce riveted (SPR) joint is elucidated using numerical and experimental approaches. Non-linear finite element (FE) simulations incorporating strain rate and temperature effects were performed to model the deformation in the SPR process. In order to accurately capture the deformation, a stress triaxiality-based damage material model was employed to capture the sheet piercing from the rivet. Strong visual comparison between the physical cross-section of the SPR joint and the simulation was achieved. To aid in understanding of the role of deformation in the riveting process and to validate the modeling approach, several experimental measurements were conducted. To quantify the plastic deformation from the piercing of the rivet, micro hardness mapping was performed on a cross-section of the SPR joint.
Journal Article

Repairing Volume Defects of Al-Cu Alloy Joints by Active-Passive Filling Friction Stir Repairing

2020-11-12
Abstract In this study, active-passive filling friction stir repairing (A-PFFSR) process was employed to repair the volume defects in friction stir welding (FSW) joints of Al-Cu alloy. The volume defects with varied geometries were first machined into taper holes, which are similar to keyhole defect by a rotational tool with a threaded pin. Then, the keyhole defect was effectively filled with the materials around the keyhole and an additional filler using a number of nonconsumable pinless tools with the shoulders having six spiral flutes. The macro/microstructures, microhardness, and tensile properties of the repaired joints were investigated. The influences of plunge speed on macro/microstructures and mechanical properties of the repaired joints have been analyzed too. It was noticed that decreasing plunge speed was effective to improve the frictional heat and material flow, which increased joint surface integrity avoiding interfacial drawbacks.
Journal Article

Reliable and Robust Optimization of the Planetary Gear Train Using Particle Swarm Optimization and Monte Carlo Simulation

2021-08-24
Abstract Uncertainties in design represent a considerable industrial stake. Controlling the reliability and robustness of a mechanical system at the level of design has become necessary in order to control these uncertainties. Using the theory of probabilistic design optimization, the present work reports on the application of the concept of reliability-based robustness on minimizing the weight of a planetary gear train (PGT). The optimum combination of reliability and robustness for the minimum weight of the PGT was found using an optimization algorithm based on Particle Swarm Optimization (PSO) and Monte Carlo Simulation (MCS). The algorithm was developed by combining the propagation of uncertainties with the optimization of the function objective within a single probabilistic model. The results show that a reliability-based robust design offers a better alternative to the traditional deterministic design models.
Journal Article

Rapid Methodology to Simultaneous Quantification of Different Antioxidants in Biodiesel Using Infrared Spectrometry and Multivariate Calibration

2019-03-21
Abstract The aim of this work is to quantify three different antioxidants in biodiesel - Santoflex, baynox, and tocopherol-using Middle Infrared (MIR) spectroscopy and chemometrics. For the construction of the models, 28 samples containing an antioxidant in the range of 0.1 to 500 mg/kg in biodiesel were used. We developed three models based on PLS 1 multivariate calibration method to quantify each of the three antioxidants separately and a model based on PLS 2 method to quantify simultaneously all the antioxidants. All models were compared to the values of root mean square error of calibration (RMSEC) and validation (RMSEP). For the baynox, santoflex, and tocopherol antioxidants quantification using PLS 1, the values of RMSEC and RMSEP were 37.2, 18.8, 9.0 mg/kg, and 26.7, 21.1, 68.6 mg/kg, respectively.
Journal Article

Quality Monitoring and Multi-Objective Optimization of the Glass Fiber-Reinforced Plastic Injection Molded Products

2022-09-15
Abstract Compared with traditional plastics, glass fiber-reinforced plastic (GFRP) has more outstanding performance advantages, which is more and more widely used. To improve the quality of the products manufactured by the GFRP injection molding, the injection parameters are optimized in two stages. In the first stage, the range of optimization parameters including the glass fiber content and six molding parameters is selected by the Moldflow recommendation. The warpage and shrinkage of each orthogonal experiment are obtained by the Moldflow simulation. Then, a comprehensive evaluation method called GRA-TOPSIS and the range analysis method are utilized to identify the optimal level values of all optimization parameters. According to the order of influence of each parameter, the range of these parameters is adjusted for the second stage.
Journal Article

Propeller and Dynamometer Testing of an Additive Manufactured Small Internal Combustion Engine

2022-04-04
Abstract As the advancement of metal additive manufacturing (AM) technology persists, so will the expansion of its capabilities and applications. In particular, the automotive industry can benefit from the advantages provided by AM, such as flexibility in design and customized products. In this avenue, one potential application of AM is in internal combustion engines (ICEs). As a first step, this effort explores the feasibility of using AM to produce working ICE components for an air-cooled engine. The cylinder head and crankcase of an 11 cm3 displacement volume Saito FG-11 engine were the components identified for metal AM. They were manufactured through Laser Powder Bed Fusion (LBPF) and post machined to achieve the necessary tolerances. Engine testing encompassed both propeller and dynamometer setups with corresponding data collection to measure and compare engine performance.
Journal Article

Processing of Aluminium/Boron Carbide Composites and Functionally Graded Materials: A Literature Review

2021-11-03
Abstract Aluminum boron carbide (Al-B4C) composites have been a popular choice among scientists and designers for high-performance strength-to-weight ratio engineering applications. Requirements for such applications are met due to enhanced microstructure, mechanical properties, and ease of processing conditions. The performance and application of these composites are mostly dependent on certain parameters, like composition ratios of reinforcing particles, their sizes and wettability, the presence of additional phases, etc. Prominently, efforts are also being made to synthesize Al-B4C as functionally graded materials (FGMs) that have the potential to cater to the needs of advanced engineering applications and can facilitate new dimensions in the field of aluminum matrix composites (AMCs).
X