Refine Your Search

Topic

Search Results

Journal Article

μ-CT Investigation into the Impact of a Fuel-Borne Catalyst Additive on the Filtration Efficiency and Backpressure of Gasoline Particulate Filters

2022-01-18
Abstract An investigation into the pre-ashing of new gasoline particulate filters (GPFs) has demonstrated that the filtration efficiency of such filters can be improved by up to 30% (absolute efficiency improvement) when preconditioned using ash derived from a fuel-borne catalyst (FBC) additive. The additive is typically used in diesel applications to enable diesel particulate filter (DPF) regeneration and can be added directly into the fuel tank of the vehicle. This novel result was compared with ash derived from lube oil componentry, which has previously been shown to improve filtration efficiency in GPFs. The lube oil-derived ash utilized in this work improved the filtration efficiency of the GPF by −30%, comparable to the ash derived from the FBC additive.
Journal Article

Windshield Glare from Bus Interiors: Potential Impact on City Transit Drivers at Night

2019-11-15
Abstract Windshield glare at night is a safety concern for all drivers. Public transit bus drivers also face another concern about glare caused by interior lighting sources originally designed for passenger safety. The extent to which interior light reflections contribute to glare is unknown. Unique methods for measuring discomfort and disability glare during bus driving were developed. An initial simulation study measured windshield luminance inside of a New Flyer D40LF diesel bus parked in a controlled, artificial, totally darkened test environment. Findings indicated significant disability glare (from elevated luminance) in the drivers’ primary field of view due to interior reflections. Any reduction in contrast would result in less prominent glare if actual driving conditions differ. To assess this, levels of windshield glare were also measured with the bus parked on the roadside under the “background glow” of the urban environment.
Journal Article

Wind Noise Contribution Analysis

2021-10-11
Abstract This article is motivated by observations of the wind tunnel measurement data acquired during benchmarking and program development for a variety of passenger vehicles over the years. In wind noise development, contribution analysis is a common practice to screen and identify the most significant sources and paths. In order to shed light on the whole picture of the contribution analysis, the work presented in this article falls into two categories. One is the analysis of underlying mechanisms for a better understanding of the phenomena observed in the contribution results. The other is the summarization of wind noise contributions obtained by wind tunnel testing for some representative subsystems, e.g., the contributions based on different reference states, the effect of grilles, underbody, acoustic glass, and auditory masking.
Journal Article

What Can User Typologies Tell Us about Carsickness Criticality in Future Mobility Systems

2022-02-15
Abstract Car manufacturers are continuously improving passenger comfort by advancing technologies including highly automated driving. Before the broad introduction of automated driving, specific human factors regarding passenger comfort must be considered, including motion sickness. Therefore, the identification of the frequency of motion sickness and associated factors in the population is needed to extrapolate the effects for future mobility systems. We conducted three surveys between 2015 and 2020, asking people questions about their experience with motion sickness in cars. Based on the responses of 1165 participants, gender and age showed a strong influence on the self-reported frequency of motion sickness. For deeper analysis, a logistic order regression model was used to estimate the frequency of motion sickness for different user typologies.
Journal Article

Vibration-Induced Discomfort in Vehicles: A Comparative Evaluation Approach for Enhancing Comfort and Ride Quality

2024-03-14
Abstract This article introduces a methodology for conducting comparative evaluations of vibration-induced discomfort. The aim is to outline a procedure specifically focused on assessing and comparing the discomfort caused by vibrations. The article emphasizes the metrics that can effectively quantify vibration-induced discomfort and provides insights on utilizing available information to facilitate the assessment of differences observed during the comparisons. The study also addresses the selection of appropriate target scenarios and test environments within the context of the comparative evaluation procedure. A practical case study is presented, highlighting the comparison of wheel corner concepts in the development of new vehicle architectures. Currently, the evaluation criteria and difference thresholds available allow for comparative evaluations within a limited range of vehicle vibration characteristics.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
Journal Article

Vibration Mitigation of Commercial Vehicle Active Tandem Axle Suspension System

2022-01-24
Abstract A tandem axle suspension is an important system to the ride comfort and vehicle stability of and road damage experience from commercial vehicles. This article introduces an investigation into the use of a controlled active tandem axle suspension, which for the first time enables more effective control using two fuzzy logic controllers (FLC). The proposed controllers compute the actuator forces based on system outputs: displacements, velocities, and accelerations of movable parts of tandem axle suspension as inputs to the controllers, in order to achieve better ride comfort and vehicle stability and extend the lifetime of road surface than the conventional passive suspension. A mathematical model of a six-degree-of-freedom (6-DOF) tandem axle suspension system is derived and simulated using Matlab/Simulink software.
Journal Article

Vibration Analysis of the Bicycle-Car Model Considering Tire-Road Separation

2021-07-28
Abstract This article investigates the dynamics of non-smooth and nonlinear oscillations of a bicycle-car model, considering the tire-road separation. Road contact applies a non-holonomic constrain on the dynamics system that makes the equations of motion to be different under in-contact and off-contact conditions. The set of nonlinear equations of the system has been formulated based on nondimensionalization to minimize the number of parameters and generalize the results. To compare the quality of different suspensions in reducing the unpleasant no-contact conditions, we define a contact-free fraction indicator to measure the separation fraction time during a cycle of steady-state oscillation. An observation of frequency responses including vertical displacements, the pitch mode, and the domain of contact-free fraction of time has been investigated to clarify engineering design directions.
Journal Article

Using an Inerter-Based Suspension to Reduce Carbody Flexible Vibration and Improve Riding-Comfort

2023-02-01
Abstract The riding-comfort of high-speed trains affects the travel experience of passengers, and the lightweight design technology of the carbody increases the flexible vibration and reduces passenger comfort. To this end, a vertical dynamics model of railway vehicles is established to demonstrate the potential of using passive inerter-based suspensions to reduce the flexible vibration of the carbody and improve riding-comfort. According to the characteristics of the inerter component, an appropriate inerter-based suspension is applied to the railway vehicle to reduce low-frequency resonance. The sum of the comfort indexes of the three reference points of the carbody is optimized as the objective function to improve the passenger comfort of the whole vehicle. The results reveal that the inerter-based suspension applied to the primary or secondary suspension has different effects on vehicle vibration.
Journal Article

Uncertainty Analysis of High-Frequency Noise in Battery Electric Vehicle Based on Interval Model

2019-02-01
Abstract The high-frequency noise issue is one of the most significant noise, vibration, and harshness problems, particularly in battery electric vehicles (BEVs). The sound package treatment is one of the most important approaches toward solving this problem. Owing to the limitations imposed by manufacturing error, assembly error, and the operating conditions, there is often a big difference between the actual values and the design values of the sound package components. Therefore, the sound package parameters include greater uncertainties. In this article, an uncertainty analysis method for BEV interior noise was developed based on an interval model to investigate the effect of sound package uncertainty on the interior noise of a BEV. An interval perturbation method was formulated to compute the uncertainty of the BEV’s interior noise.
Journal Article

Torque Converter Dynamic Characterization Using Torque Transmissibility Frequency Response Functions: Locked Clutch Operation

2024-01-10
Abstract A unique torque converter test setup was used to measure the torque transmissibility frequency response function of four torque converter clutch dampers using a stepped, multi-sine-tone, excitation technique. The four torque converter clutch dampers were modeled using a lumped parameter technique, and the damper parameters of stiffness, damping, and friction were estimated using a manual, iterative parameter estimation process. The final damper parameters were selected such that the natural frequency and damping ratio of the simulated torque transmissibility frequency response functions were within 10% and 20% error, respectively, of the experimental modal parameters. This target was achieved for all but one of the tested dampers. The damper models include stiffness nonlinearities, and a speed-dependent friction torque due to centrifugal loading of the damper springs.
Journal Article

Tire-Road Separation Time Reduction by an Adaptive Proportional-Integral-Derivative Controller Utilizing Particle Swarm Optimization Algorithm

2021-05-05
Abstract The article examines quarter-car dynamics with the possible separation of its tire from the road. A set of nondimensionalized differential equations has been proposed to minimize the involved parameters. Time and frequency response investigation of the system has been analyzed insightfully considering tire-road separation. To measure the separation of the tire, a time fraction index is defined, indicating the fraction of separation time in a cycle at steady-state conditions. Minimizing the index is assumed as the objective of the optimized system. An actuator is applied to the vehicle suspension in parallel with the mainspring and damper of the suspension. Particle Swarm Optimization (PSO) is used to properly tune a Proportional-Integral-Derivative (PID) controller for the active suspension system excited by a harmonic excitation.
Journal Article

Time Domain Analysis of Ride Comfort and Energy Dissipation Characteristics of Automotive Vibration Proportional–Integral–Derivative Control

2024-02-05
Abstract A time domain analysis method of ride comfort and energy dissipation characteristics is proposed for automotive vibration proportional–integral–derivative (PID) control. A two-degrees-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined, and the Routh stability criterion method was introduced to assess the impact of PID control on vehicle stability. The PID control parameters are tuned using the differential evolution algorithm, and to improve the algorithm’s adaptive ability, an adaptive operator is introduced, so that the mutation factor of differential evolution algorithm can change with the number of iterations.
Journal Article

The Utilization of Psychometric Functions to Predict Speech Intelligibility in Vehicles

2023-12-29
Abstract In this study, a novel assessment approach of in-vehicle speech intelligibility is presented using psychometric curves. Speech recognition performance scores were modeled at an individual listener level for a set of speech recognition data previously collected under a variety of in-vehicle listening scenarios. The model coupled an objective metric of binaural speech intelligibility (i.e., the acoustic factors) with a psychometric curve indicating the listener’s speech recognition efficiency (i.e., the listener factors). In separate analyses, two objective metrics were used with one designed to capture spatial release from masking and the other designed to capture binaural loudness. The proposed approach is in contrast to the traditional approach of relying on the speech recognition threshold, the speech level at 50% recognition performance averaged across listeners, as the metric for in-vehicle speech intelligibility.
Journal Article

The Synergies of Valve Overlap Reduction and External Exhaust Gas Recirculation Dilution at Boosted Loads of a Downsized Gasoline Turbo Direct Injection Engine

2021-04-09
Abstract Uncertainty of fuel reserves, environmental crisis, and health concerns arise from transport demands and reliance on fossil fuels. Downsized gasoline turbocharged direct injection (GTDI) engines have been developed and applied to most modern gasoline vehicles, delivering superior efficiency in high-load operation, reduced friction, and weight. But fuel enrichment and late combustion phasing to mitigate knocking combustion have hindered the efficiency benefits at higher loads with high boost. Furthermore, the wide valve-overlap with a three-cylinder setup for the maximum scavenging efficiency produces bursts of short-circuit (SC) air to cause underestimation of the equivalence ratio by the oxygen sensor, resulting in higher tailpipe nitrogen oxides (NOx) emissions with three-way catalyst (TWC) exhaust aftertreatment. Reducing the valve overlap to limit short-circuiting and enrichment will recover the combustion efficiency and the engine ER, but at the cost of high knock onset.
Journal Article

The Impacts of Pd in BEA Zeolite on Decreasing Cold-Start NMOG Emission of an E85 Fuel Vehicle

2018-10-25
Abstract In the development of hydrocarbon (HC) traps for E85 fuel vehicle emission control, the addition of palladium (Pd) to BEA zeolite was studied for trapping and decreasing cold-start ethanol emissions. BEA zeolite after a laboratory aging at 750°C for 25 hours released nearly all of the trapped ethanol as unconverted ethanol at low temperature, and some ethene was released at a higher temperature by a dehydration reaction. The addition of Pd to BEA zeolite showed a decrease in the release of unconverted ethanol emissions even after the lab aging. The release of methane (CH4), acetaldehyde (CH3CHO), carbon monoxide (CO), and CO2 from Pd-BEA zeolite during desorption (temperature programmed desorption (TPD)) demonstrated that multiple ethanol reaction mechanisms were involved including dehydrogenation and decomposition reactions.
Journal Article

The Effect of Structural Damping Foam on Tire Vibration

2020-02-28
Abstract Vehicle noise and vibration is a major focus during the design of the vehicle. The tire is a large contributor to the noise and vibration experienced inside the vehicle cabin. Any unevenness or asperities in the road cause the tire structure to vibrate, which in turn causes components in the vehicle to vibrate and generate noise. It is common in the industry to use foam inserts inside the tire air cavity that reduces the noise generated. This foam is typically intended to reduce a specific resonance in the tire-the resonance due to the air cavity. Recently, there is interest in using foam as a structural damper to reduce structural resonances in the tire. A new analytical tire model for determining the effect that structural damping foam has on the noise and vibration characteristics of the tire has been developed. The theoretical formulation of this model is presented, as well as comparison with experiments and a parametric analysis of the model.
Journal Article

The Effect of NO2/NOx Ratio on the Performance of a SCR Downstream of a SCR Catalyst on a DPF

2019-06-14
Abstract Different aftertreatment systems consisting of a combination of selective catalytic reduction (SCR) and SCR catalyst on a diesel particulate filter (DPF) (SCR-F) are being developed to meet future oxides of nitrogen (NOx) emissions standards being set by the Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). One such system consisting of a SCRF® with a downstream SCR was used in this research to determine the system NOx reduction performance using experimental data from a 2013 Cummins 6.7L ISB diesel engine and model data. The contribution of the three SCR reactions on NOx reduction performance in the SCR-F and the SCR was determined based on the modeling work. The performance of a SCR was simulated with a one-dimensional (1D) SCR model. A NO2/NOx ratio of 0.5 was found to be optimum for maximizing the NOx reduction and minimizing NH3 slip for the SCR for a given value of ammonia-to-NOx ratio (ANR).
Journal Article

The Effect of Change in Assembly Sequence on Permanent Strain of Cab Suspension Console

2020-08-20
Abstract Heavy commercial vehicles play an important role in creating the trade and economic balance of countries. Also, the durability and safety of heavy commercial vehicles come to the fore. Heavy commercial vehicles consist of two parts. These are the chassis area with the equipment that allows the vehicle to move and the cabin section where the driver is located. The cabin area is the most important area that ensures the highest level of driver safety. Considering that the production of trucks is increasing day by day, it is inevitable for companies to increase their R&D activities in the field of cabin and cabin suspension systems for much safer, durable, and comfortable trucks. This study aims to determine the safe torque value of the fasteners and their assembly sequence of the Cab Suspension Console, which is one of the most important connection parts in a truck and which can cause a fatal accident by breaking.
Journal Article

TOC

2022-04-28
Abstract TOC
X