Refine Your Search

Topic

Search Results

Journal Article

Wheel Chock Key Design Elements and Geometrical Profile for Truck Vehicle Restraint

2018-06-06
Abstract Wheel chocks are rather simple compliant mechanisms for stabilizing vehicles at rest. However, chocks must be carefully designed given the complex interaction between the chock and the tire/suspension system. Despite their importance for safety, literature is surprisingly limited in terms of what makes a wheel chock efficient. Using simple but reliable quasi-static mechanical models, this study identifies mechanical requirements that help to avoid a number of failure modes associated with many existing wheel chocks. Given that chock grounding is not always possible, a chock’s maximum restraining capacity is only obtained when the wheel is completely supported by the chock. A generic chock profile is proposed to achieve this objective while mitigating undesirable failure modes. The profile is based on fundamental mechanical principles and no assumption is made on the load interaction between the chock and the wheel.
Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

Water Droplet Collison and Erosion on High-Speed Spinning Wheels

2024-04-04
Abstract The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage.
Journal Article

Visualization and Statistical Analysis of Passive Pre-chamber Knock in a Constant-volume Optical Engine

2023-10-20
Abstract This study investigates the behavior of pre-chamber knock in comparison to traditional spark ignition engine knock, using a modified constant-volume gasoline engine with an optically accessible piston. The aim is to provide a deeper understanding of pre-chamber knock combustion and its potential for mitigating knock. Five passive pre-chambers with different nozzle diameters, volumes, and nozzle numbers were tested, and nitrogen dilution was varied from 0% to 10%. The stochastic nature of knock behavior necessitates the use of statistical methods, leading to the proposal of a high-frequency band-pass filter (37–43 kHz) as an alternative pre-chamber knock metric. Pre-chamber knock combustion was found to exhibit fewer strong knock cycles compared to SI engines, indicating its potential for mitigating knock intensity. High-speed images revealed pre-chamber knock primarily occurs near the liner, where end-gas knock is typically exhibited.
Journal Article

Vibration Mitigation of Commercial Vehicle Active Tandem Axle Suspension System

2022-01-24
Abstract A tandem axle suspension is an important system to the ride comfort and vehicle stability of and road damage experience from commercial vehicles. This article introduces an investigation into the use of a controlled active tandem axle suspension, which for the first time enables more effective control using two fuzzy logic controllers (FLC). The proposed controllers compute the actuator forces based on system outputs: displacements, velocities, and accelerations of movable parts of tandem axle suspension as inputs to the controllers, in order to achieve better ride comfort and vehicle stability and extend the lifetime of road surface than the conventional passive suspension. A mathematical model of a six-degree-of-freedom (6-DOF) tandem axle suspension system is derived and simulated using Matlab/Simulink software.
Journal Article

Vehicle Braking Performance Improvement via Electronic Brake Booster

2024-02-10
Abstract Throughout the automobile industry, the electronic brake boost technologies have been widely applied to support the expansion of the using range of the driver assist technologies. The electronic brake booster (EBB) supports to precisely operate the brakes as necessary via building up the brake pressure faster than the vacuum brake booster. Therefore, in this article a novel control strategy for the EBB based on fuzzy logic control (FLC) is developed and studied. The configuration of the EBB is established and the system model including the permanent magnet synchronous motor (PMSM), a two-stage reduction transmission (gears and a ball screw), a servo body, reaction disk, and the hydraulic load are modeled by MATLAB/Simulink. The load-dependent friction has been compensated by using Karnopp friction model. Due to the strong nonlinearity on the EBB components and the load-dependent friction, FLC has been used for the control algorithm.
Journal Article

Vehicle Aerodynamic Optimization: On a Combination of Adjoint Method and Efficient Global Optimization Algorithm

2019-04-26
Abstract This article presents a workflow for aerodynamic optimization of vehicles that for the first time combines the adjoint method and the efficient global optimization (EGO) algorithm in order to take advantage of both the gradient-based and gradient-free methods for aerodynamic optimization problems. In the workflow, the adjoint method is first applied to locate the sensitive surface regions of the baseline vehicle with respect to the objective functions and define a proper design space with reasonable design variables. Then the EGO algorithm is applied to search for the optimal site in the design space based on the expected improvement (EI) function. Such workflow has been applied to minimize the aerodynamic drag for a mass-produced electric vehicle. With the help of STAR-CCM+ and its adjoint solver, sensitive surface regions with respect to the aerodynamic drag are first located on the vehicle.
Journal Article

Validation of Kinetic Mechanisms against Various Ignition Delay Data and the Development of Ignition Delay Correlations for Ethanol, Natural Gas, and Primary Reference Fuel Blends under Homogeneous Charge Compression Ignition Conditions

2021-09-21
Abstract Homogeneous Charge Compression Ignition (HCCI) is a promising advanced combustion concept with high efficiencies and low emissions. Chemical kinetic mechanisms and ignition delay correlations (IDCs) are often applied to simulate HCCI combustion. However, a large number of mechanisms and correlations are not developed specifically for HCCI conditions, i.e., lean mixtures and usually with significant residual gas fractions (RGF). To address this issue, a two-part study is conducted. First, experimental ignition delay time (IDT) data from literature under typical HCCI conditions is collected. Then, thirteen widely applied mechanisms for ethanol, natural gas, and primary reference fuel (PRF) blends of isooctane and n-heptane are validated by running constant-volume simulations. Their performance and accuracy are evaluated. Second, the mechanism with the highest accuracy for each fuel is used to generate IDCs for HCCI conditions.
Journal Article

Validation of Crush Energy Calculation Methods for Use in Accident Reconstructions by Finite Element Analysis

2018-10-04
Abstract The crush energy is a key parameter to determine the delta-V in accident reconstructions. Since an accurate car crush profile can be obtained from 3D scanners, this research aims at validating the methods currently used in calculating crush energy from a crush profile. For this validation, a finite element (FE) car model was analyzed using various types of impact conditions to investigate the theory of energy-based accident reconstruction. Two methods exist to calculate the crush energy: the work based on the barrier force and the work based on force calculated by the vehicle acceleration times the vehicle mass. We show that the crush energy calculated from the barrier force was substantially larger than the internal energy calculated from the FE model. Whereas the crush energy calculated from the vehicle acceleration was comparable to the internal energy of the FE model.
Journal Article

Using Numerical Simulation to Obtain Length of Constant Area Section in Scramjet Combustor

2020-03-16
Abstract Constant area section length downstream to the fuel injection point is a crucial dimension of scramjet duct geometry. It has a major contribution in creating the maximum effective pressure inside the combustor that is required for propulsion. The length is limited by the thermal choking phenomenon, which occurs when heat is added in a flow through constant area duct. As per theory, to avoid thermal choking the constant area section length depends upon the inlet conditions and the rate of heat addition. The complexity related to mixing and combustion process inside the supersonic stream makes it difficult to predict the rate of heat addition and in turn the length. Recent efforts of simulating the reacting flow inside scramjet combustors are encouraging and can be useful in this regard. The presented work attempts to use simulation results of scramjet combustion for predicting the constant area section length for a typical scramjet combustor.
Journal Article

Use of Artificial Neural Network to Develop Surrogates for Hydrotreated Vegetable Oil with Experimental Validation in Ignition Quality Tester

2024-02-01
Abstract This article presents surrogate mixtures that simulate the physical and chemical properties in the auto-ignition of hydrotreated vegetable oil (HVO). Experimental investigation was conducted in the Ignition Quality Tester (IQT) to validate the auto-ignition properties with respect to those of the target fuel. The surrogate development approach is assisted by artificial neural network (ANN) embedded in MATLAB optimization function. Aspen HYSYS is used to calculate the key physical and chemical properties of hundreds of mixtures of representative components, mainly alkanes—the dominant components of HVO, to train the learning algorithm. Binary and ternary mixtures are developed and validated in the IQT. The target properties include the derived cetane number (DCN), density, viscosity, surface tension, molecular weight, and volatility represented by the distillation curve. The developed surrogates match the target fuel in terms of ignition delay and DCN within 6% error range.
Journal Article

Understanding the Origin of Cycle-to-Cycle Variation Using Large-Eddy Simulation: Similarities and Differences between a Homogeneous Low-Revving Speed Research Engine and a Production DI Turbocharged Engine

2018-12-14
Abstract A numerical study using large-eddy simulations (LES) to reproduce and understand sources of cycle-to-cycle variation (CCV) in spark-initiated internal combustion engines (ICEs) is presented. Two relevantly different spark-ignition (SI) units, that is, a homogeneous-charge slow-speed single-cylinder research unit (the transparent combustion chamber (TCC)-III, Engine 1) and a stratified-charge high-revving speed gasoline direct injection (GDI) (Engine 2) one, are analyzed in fired operations. Multiple-cycle simulations are carried out for both engines and LES results well reproduce the experimentally measured combustion CCV. A correlation study is carried out, emphasizing the decisive influence of the early flame period variability (1% of mass fraction burnt (MFB1)) on the entire combustion event in both ICEs. The focus is moved onto the early flame characteristics, and the crucial task to determine the dominant causes of its variability (if any) is undertaken.
Journal Article

Understanding the Influence of Seat Belt Geometries on Belt-to-Pelvis Angle Can Help Prevent Submarining

2022-04-13
Abstract The first objective of this study, addressed in Part 1, is to use finite element (FE) human body modeling (HBM) to evaluate the tangent of the Belt-to-Pelvis angle (tanθBTP) as a submarining predictor in frontal crashes for occupants in reclined seats. The second objective, addressed in Part 2, is to use this predictor to assess two technical solutions for reducing submarining risks for two different occupant anthropometries. In Part 1, tanθBTP (the lap belt penetration from the anterior superior iliac spine [ASIS] in the abdominal direction) was evaluated in impact simulations with varying seat belt anchor positions. Sled simulations with a 56 km/h full-frontal crash pulse were performed with the SAFER HBM morphed to the anthropometry of a small female and average male. A correlation was found between the submarining predictor and submarining.
Journal Article

Understanding the Impact of Standardized SAE Waveform Parameter Variation on Artificial Lightning Plasma, Specimen Loading, and Composite Material Damage

2020-02-18
Abstract Previous works have established strategies to model artificial test lightning plasma with specific waveform parameters and use the predicted plasma behavior to estimate test specimen damage. To date no computational works have quantified the influence of varying the waveform parameters on the predicted plasma behavior and resulting specimen damage. Herein test standard Waveform B has been modelled and the waveform parameters of “waveform peak,” “rise time,” and “time to reach the post-peak value” have been varied. The plasma and specimen behaviors have been modelled using the Finite Element (FE) method (a Magnetohydrodynamic FE multiphysics model for the plasma, a FE thermal-electric model for the specimen). For the test arrangements modelled herein, it has been found that “peak current” is the key parameter influencing plasma properties and specimen damage.
Journal Article

Uncertainty Assessment of Octane Index Framework for Stoichiometric Knock Limits of Co-Optima Gasoline Fuel Blends

2018-10-25
Abstract This study evaluates the applicability of the Octane Index (OI) framework under conventional spark ignition (SI) and “beyond Research Octane Number (RON)” conditions using nine fuels operated under stoichiometric, knock-limited conditions in a direct injection spark ignition (DISI) engine, supported by Monte Carlo-type simulations which interrogate the effects of measurement uncertainty. Of the nine tested fuels, three fuels are “Tier III” fuel blends, meaning that they are blends of molecules which have passed two levels of screening, and have been evaluated to be ready for tests in research engines. These molecules have been blended into a four-component gasoline surrogate at varying volume fractions in order to achieve a RON rating of 98. The molecules under consideration are isobutanol, 2-butanol, and diisobutylene (which is a mixture of two isomers of octene). The remaining six fuels were research-grade gasolines of varying formulations.
Journal Article

Transient Response of Turbocharged Compression Ignition Engine under Different Load Conditions

2023-07-26
Abstract In urban roads the engine speed and the load vary suddenly and frequently, resulting in increased exhaust emissions. In such operations, the effect of air injection technique to access the transient response of the engine is of great interest. The effectiveness of air injection technique in improving the transient response under speed transient is investigated in detail [1]; however, it is not evaluated for the load transients. Load step demand of the engine is another important event that limits the transient response of the turbocharger. In the present study, response of a heavy-duty turbocharged diesel engine is investigated for different load conditions. Three cases of load transients are considered: constant load, load magnitude variation, and load scheduling. Air injection technique is simulated and after optimization of injection pressure based on orifice diameter, its effect on the transient response is presented.
Journal Article

Transient Operation and Over-Dilution Mitigation for Low-Pressure EGR Systems in Spark-Ignition Engines

2018-09-17
Abstract Low-Pressure cooled Exhaust Gas Recirculation (LP-cEGR) is proven to be an effective technology for fuel efficiency improvement in turbocharged spark-ignition (SI) engines. Aiming to fully exploit the EGR benefits, new challenges are introduced that require more complex and robust control systems and strategies. One of the most important restrictions of LP-cEGR is the transient response, since long air-EGR flow paths introduce significant transport delays between the EGR valve and the cylinders. High dilution generally increases efficiency, but can lead to cycle-by-cycle combustion variation. Especially in SI engines, higher-than-requested EGR dilution may lead to combustion instabilities and misfires. Considering the long EGR evacuation period, one of the most challenging transient events is throttle tip-out, where the engine operation shifts from a high-load point with high dilution tolerance to a low-load point where EGR tolerance is significantly reduced.
Journal Article

Trajectory Planning for Connected and Automated Vehicles: Cruising, Lane Changing, and Platooning

2021-10-22
Abstract Autonomy and connectivity are considered among the most promising technologies to improve safety and mobility and reduce fuel consumption and travel delay in transportation systems. In this paper, we devise an optimal control-based trajectory planning model that can provide safe and efficient trajectories for the subject vehicle while incorporating platoon formation and lane-changing decisions. We embed this trajectory planning model in a simulation framework to quantify its fuel efficiency and travel time reduction benefits for the subject vehicle in a dynamic traffic environment. Specifically, we compare and analyze the statistical performance of different controller designs in which lane changing or platooning may be enabled, under different values of time (VoTs) for travelers.
Journal Article

Toward Material Efficient Vehicles: Ecodesign Recommendations Based on Metal Sustainability Assessments

2018-09-17
Abstract Current End-of-Life Vehicle (ELV) recycling processes are mainly based on mechanical separation techniques. These methods are designed to recycle those metals with the highest contribution in the vehicle weight such as steel, aluminum, and copper. However, a conventional vehicle uses around 50 different types of metals, some of them considered critical by the European Commission. The lack of specific recycling processes makes that these metals become downcycled in steel or aluminum or, in the worst case, end in landfills. With the aim to define several ecodesign recommendations from a raw material point of view, it is proposed to apply a thermodynamic methodology based on exergy analysis. This methodology uses an indicator called thermodynamic rarity to assess metal sustainability. It takes into account the quality of mineral commodities used in a vehicle as a function of their relative abundance in Nature and the energy intensity required to extract and process them.
Journal Article

Topological Optimization of Non-Pneumatic Unique Puncture-Proof Tire System Spoke Design for Tire Performance

2023-07-18
Abstract Non-pneumatic tires (NPTs) have been widely used due to their advantages of no occurrence of puncture-related problems, no need of air maintenance, low rolling resistance, and improvement of passenger comfort due to its better shock absorption. It has a variety of applications as in earthmovers, planetary rover, stair-climbing vehicles, and the like. Recently, the unique puncture-proof tire system (UPTIS) NPT has been introduced for passenger vehicles segment. The spoke design of NPT-UPTIS has a significant effect on the overall working performance of tire. Optimized tire performance is a crucial factor for consumers and original equipment manufacturers (OEMs). Hence to optimize the spoke design of NPT-UPTIS spoke, the top and bottom curve of spoke profile have been described in the form of analytical equations. A generative design concept has been introduced to create around 50,000 spoke profiles.
X