Refine Your Search

Topic

Search Results

Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

Water Intrusion Injuries: Occupant Kinematics and Pressure Exposure during Rearward Falls from a Personal Watercraft

2023-02-17
Abstract Personal watercraft (PWC) users and other high-speed watersports participants have sustained rectal and vaginal injuries during falls into the water, herein referred to as water intrusion injuries (WIIs). WIIs result from the rapid introduction of water into these lower body cavities causing injury to the soft tissues of the perineum, rectum, and vagina. While case studies of injured water-skiers and PWC users are reported in the literature, there is little information related to passenger kinematics and pressure exposure during a rearward fall from a PWC. The results of an experimental study of passenger falls from two “high-performance” PWC are presented herein. A human passenger was caused to fall rearward as the PWC was accelerated at maximum throttle starting from idle speed (≈3–4 mph) and planing speeds of ≈20–30 mph. The subject passenger fell from the aft seat position and while standing on the rear platform.
Journal Article

Water Droplet Collison and Erosion on High-Speed Spinning Wheels

2024-04-04
Abstract The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage.
Journal Article

WM-LES-Simulation of a Generic Intake Port Geometry

2018-06-18
Abstract Fluid mechanical design of the cylinder charge motion is an important part of an engine development. In the present contribution an intake port geometry is proposed that can be used as a test case for intake port flow simulations. The objective is to fill the gap between generic test cases, such as the backward facing step or the sudden expansion, and simulations of proprietary intake ports, which are barely accessible in the community. For the intake geometry measurement data was generated on a flow-through test bench and a wall-modeled LES-simulation using a hybrid RANS/LES approach for near-wall regions was conducted. The objective is to generate and analyze a reference flow case. Since mesh convergence studies are too costly for scale resolving approaches only one simulation was done, but on a very fine and mostly block-structured numerical mesh to achieve minimal numerical dissipation.
Journal Article

Uncertainty in Gravimetric Analysis Required for LEV III Light-Duty Vehicle PM Emission Measurements

2018-06-20
Abstract With the reduction in PM emission standards for light duty vehicles to 3 mg/mi for current Federal and California standards and subsequently to 1 mg/mi in 2025 for California, the required PM measurements are approaching the detection limits of the gravimetric method. A “filter survey” was conducted with 11 laboratories, representing industry, agencies, research institutes, and academic institutions to analyze the accuracy of the current gravimetric filter measurement method under controlled conditions. The reference filter variability, measured within a given day over periods as short as an hour, ranged from 0.61 μg to 2 μg to 5.0 μg for the 5th, 50th, 95th percentiles (n > 40,000 weights, 317 reference objects), with a laboratory average of 2.5 μg.
Journal Article

Uncertainty Assessment of Octane Index Framework for Stoichiometric Knock Limits of Co-Optima Gasoline Fuel Blends

2018-10-25
Abstract This study evaluates the applicability of the Octane Index (OI) framework under conventional spark ignition (SI) and “beyond Research Octane Number (RON)” conditions using nine fuels operated under stoichiometric, knock-limited conditions in a direct injection spark ignition (DISI) engine, supported by Monte Carlo-type simulations which interrogate the effects of measurement uncertainty. Of the nine tested fuels, three fuels are “Tier III” fuel blends, meaning that they are blends of molecules which have passed two levels of screening, and have been evaluated to be ready for tests in research engines. These molecules have been blended into a four-component gasoline surrogate at varying volume fractions in order to achieve a RON rating of 98. The molecules under consideration are isobutanol, 2-butanol, and diisobutylene (which is a mixture of two isomers of octene). The remaining six fuels were research-grade gasolines of varying formulations.
Journal Article

U.S. Light-Duty Vehicle Air Conditioning Fuel Use and Impact of Solar/Thermal Control Technologies

2018-12-11
Abstract To reduce fuel consumption and carbon dioxide (CO2) emissions from mobile air conditioning (A/C) systems, “U.S. Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards” identified solar/thermal technologies such as solar control glazings, solar reflective paint, and active and passive cabin ventilation in an off-cycle credit menu. National Renewable Energy Laboratory (NREL) researchers developed a sophisticated analysis process to calculate U.S. light-duty A/C fuel use that was used to assess the impact of these technologies, leveraging thermal and vehicle simulation analysis tools developed under previous U.S. Department of Energy projects. Representative U.S. light-duty driving behaviors and weighting factors including time-of-day of travel, trip duration, and time between trips were characterized and integrated into the analysis.
Journal Article

Transient Response of Turbocharged Compression Ignition Engine under Different Load Conditions

2023-07-26
Abstract In urban roads the engine speed and the load vary suddenly and frequently, resulting in increased exhaust emissions. In such operations, the effect of air injection technique to access the transient response of the engine is of great interest. The effectiveness of air injection technique in improving the transient response under speed transient is investigated in detail [1]; however, it is not evaluated for the load transients. Load step demand of the engine is another important event that limits the transient response of the turbocharger. In the present study, response of a heavy-duty turbocharged diesel engine is investigated for different load conditions. Three cases of load transients are considered: constant load, load magnitude variation, and load scheduling. Air injection technique is simulated and after optimization of injection pressure based on orifice diameter, its effect on the transient response is presented.
Journal Article

Toward Material Efficient Vehicles: Ecodesign Recommendations Based on Metal Sustainability Assessments

2018-09-17
Abstract Current End-of-Life Vehicle (ELV) recycling processes are mainly based on mechanical separation techniques. These methods are designed to recycle those metals with the highest contribution in the vehicle weight such as steel, aluminum, and copper. However, a conventional vehicle uses around 50 different types of metals, some of them considered critical by the European Commission. The lack of specific recycling processes makes that these metals become downcycled in steel or aluminum or, in the worst case, end in landfills. With the aim to define several ecodesign recommendations from a raw material point of view, it is proposed to apply a thermodynamic methodology based on exergy analysis. This methodology uses an indicator called thermodynamic rarity to assess metal sustainability. It takes into account the quality of mineral commodities used in a vehicle as a function of their relative abundance in Nature and the energy intensity required to extract and process them.
Journal Article

Torque and Pressure CFD Correlation of a Torque Converter

2019-08-22
Abstract A torque converter was instrumented with 29 pressure transducers inside five cavities under study (impeller, turbine, stator, clutch cavity between the pressure plate and the turbine shell). A computer model was created to establish correlation with measured torque and pressure. Torque errors between test and simulation were within 5% and K-Factor and torque ratio errors within 2%. Turbulence intensity on the computer model was used to simulate test conditions representing transmission low and high line pressure settings. When turbulence intensity was set to 5%, pressure simulation root mean square errors were within 11%-15% for the high line pressure setting and up to 34% for low line pressure setting. When turbulence intensity was increased to 50% for the low line pressure settings, a 6% reduced root mean square error in the pressure simulations was seen.
Journal Article

Tire Side Force Characteristics with the Coupling Effect of Vertical Load and Inflation Pressure

2018-11-09
Abstract The tire vertical load and inflation pressure have great influence on tire steady- and non-steady-state characteristics and, consequently, on the vehicle handling and stability. The objective of this article is to reveal the coupling effect of tire vertical load and inflation pressure on tire characteristics and then introduce an improved UniTire side force model including such coupling effect through experimental and theoretical analysis. First, the influence of the tire vertical load and inflation pressure on the tire characteristics is presented through experimental analysis. Second, the theoretical tire cornering stiffness and lateral relaxation length model are introduced to study the underlying mechanism of the coupling effect. Then, an improved UniTire side force model including the coupling effect of tire vertical load and inflation pressure is derived. Finally, the proposed improved UniTire side force model is validated through tire steady-state and transient data.
Journal Article

Throat Unit Collector Modeling of Gasoline Particulate Filter Performance

2019-07-26
Abstract The wide application of Gasoline Direct Injection (GDI) engines and the increasingly stringent Particulate Matter (PM) and Particulate Number (PN) regulations make Gasoline Particulate Filters (GPFs) with high filtration efficiency and low pressure drop highly desirable. However, due to the specifics of GDI operation and GDI PM, the design of these filters is even more challenging as compared to their diesel counterparts. Computational Fluid Dynamics (CFD) studies have been shown to be an effective way to investigate filter performance. In particular, our previous two-dimensional (2D) CFD study explicated the pore size and pore-size distribution effects on GPF filtration efficiency and pressure drop. The “throat unit collector” model developed in this study furthers this work in order to characterize the GPF wall microstructure more precisely.
Journal Article

Thin-Wire Thermocouple Design for Exhaust Gas Temperature Pulse Measurements in Internal Combustion Engines

2023-05-17
Abstract Accurate exhaust gas temperature (EGT) measurements are vital in the design and development process of internal combustion engines (ICEs). The unsteady ICE exhaust flow and thermal inertia of commonly used sheathed thermocouples and resistance thermometers require high bandwidth EGT pulse measurements for accurate cycle-resolved and mean EGTs. The EGT pulse measurement challenge is typically addressed using exposed thin-wire resistance thermometers or thermocouples. The sensor robustness to response tradeoff limits ICE tests to short durations over a few exhaust conditions. Larger diameter multiwire thermocouples using response compensation potentially overcomes the tradeoff. However, the literature commonly adopts weaker slack wire designs despite indications of coated weld taut wires being robust.
Journal Article

Thermomechanical Fracture Failure Analysis of a Heavy-Duty Diesel Engine Cylinder Liner through Performance Analysis and Finite Element Modeling

2020-10-02
Abstract Diesel engines include systems for cooling, lubrication, and fuel injection and contain a variety of components. A malfunction in any of the engine systems or the presence of any faulty element influences engine performance and deteriorates its components. This research is concerned with the untimely appearance of vital cracks in the liners of a turbocharged heavy-duty Diesel engine. To find the root causes for premature failure, rigorous examinations through visual observations, material characterization, and metallographic investigations are performed. These include Scanning Electron Microscope (SEM) and Energy-Dispersive Spectroscopy (EDS), fracture mechanics analysis, and performance examination, which are also followed by Finite Element Moldings. To find the proper remedy to resolve the problem, drawing a precise and reliable picture of the engine’s operating conditions is required.
Journal Article

Theoretical Development of Localized Pseudo Damage

2020-02-18
Abstract Damage is accumulated by vehicles as they travel. Current damage methods allow for the total accumulated damage to be identified; however, they do not allow for identification of the road segments that induce the largest component of the damage. The objective of this article is to develop a measure, Localized Pseudo Damage (LPD), which defines the amount of damage each individual road excitation contributes to the total accumulated pseudo damage. A novel theoretical development of LPD along with analytical and discrete simulation analyses is presented. The results show that the LPD is causal and correctly identifies the location and magnitude of damaging events. This is further demonstrated with the application of the method on a real road surface.
Journal Article

The Use of Canola Oil, n-Hexane, and Ethanol Mixtures in a Diesel Engine

2021-07-06
Abstract Environmental protection and the depletion of nonrenewable energy sources necessitate the search for the replacement of, among others, diesel fuel (Df) in diesel engines with renewable fuel without major structural changes. For this reason, vegetable oils are of interest as a possible fuel for this type of engine. Unfortunately, the physicochemical properties of vegetable oils differ significantly from Df. In addition to the boiling and freezing points, these properties include viscosity, density, and surface tension as well as wetting properties. For this reason, an attempt was made to modify these properties by adding n-hexane (Hex) and ethanol (Et) to canola oil (Co). The viscosity, density, surface tension, and wetting properties of Hex and Et are significantly different from those for Co.
Journal Article

The Neutronic Engine: A Platform for Operando Neutron Diffraction in Internal Combustion Engines

2023-11-09
Abstract Neutron diffraction is a powerful tool for noninvasive and nondestructive characterization of materials and can be applied even in large devices such as internal combustion engines thanks to neutrons’ exceptional ability to penetrate many materials. While proof-of-concept experiments have shown the ability to measure spatially and temporally resolved lattice strains in a small aluminum engine on a timescale of minutes over a limited spatial region, extending this capability to timescales on the order of a crank angle degree over the full volume of the combustion chamber requires careful design and optimization of the engine structure to minimize attenuation of the incident and diffracted neutrons to maximize count rates.
Journal Article

The Knock Propensity of Carbon Dioxide-Containing Natural Gases: Effect of Higher Hydrocarbons on Knock-Mitigating Influence of Carbon Dioxide

2020-12-16
Abstract To assess the effect of the presence of carbon dioxide (CO2) in natural gases on the knock resistance of fuel, the knock behavior of a lean-burn, high-speed medium Brake Mean Effective Pressure (BMEP) Combined Heat and Power (CHP) engine fueled with CH4 + 8 mole% C3H8 mixtures. The engine experiments are supplemented with ignition measurements and simulations of ignition and cylinder processes for various fuel compositions. The engine results show that increasing the fraction of CO2 results in an increase in knock resistance. The analysis of simulations of cylinder processes shows that for binary mixtures (CH4/CO2) and ternary mixtures (CH4/C3H8/CO2) the increase in knock resistance with increasing CO2 fraction is caused by the reduction in peak pressure/temperature, which consequently increases the autoignition delay time of the mixture.
Journal Article

The Key Role of Advanced, Flexible Fuel Injection Systems to Match the Future CO2 Targets in an Ultra-Light Mid-Size Diesel Engine

2019-01-23
Abstract The article describes the results achieved in developing a new diesel combustion system for passenger car application that, while capable of high power density, delivers excellent fuel economy through a combination of mechanical and thermodynamic efficiencies improvement. The project stemmed from the idea that, by leveraging the high fuel injection pressure of last generation common rail systems, it is possible to reduce the engine peak firing pressure (pfp) with great benefits on reciprocating and rotating components’ light-weighting and friction for high-speed light-duty engines, while keeping the power density at competitive levels. To this aim, an advanced injection system concept capable of injection pressure greater than 2500 bar was coupled to a prototype engine featuring newly developed combustion system. Then, the matching among these features has been thoroughly experimentally examined.
Journal Article

The Influence of the Content and Nature of the Dispersive Filler at the Formation of Coatings for Protection of the Equipment of River and Sea Transport

2020-01-23
Abstract To protect ship equipment of river and sea transport, it is suggested to use polymeric protective coatings based on epoxy diane oligomer ED-20, polyethylene polyamine (PEPA) curing agent and filler, which is a departure from industrial production. Thus the purpose of the work is analysis of major dependency of the properties on the content of fillers that allowed to revealed the critical filler content (furnace black) in composites to form a protective coating with the required set of characteristics. The infrared (IR) spectral analysis was used to investigate the presence of bonds on the surface of particles of the PM-75 furnace black, which allows us to assess the degree of cross-linking of the polymer. The influence of the content of dispersed furnace black on the physicomechanical and thermophysical properties and the structure of the protective coating is investigated.
X