Refine Your Search

Topic

Search Results

Journal Article

μ-CT Investigation into the Impact of a Fuel-Borne Catalyst Additive on the Filtration Efficiency and Backpressure of Gasoline Particulate Filters

2022-01-18
Abstract An investigation into the pre-ashing of new gasoline particulate filters (GPFs) has demonstrated that the filtration efficiency of such filters can be improved by up to 30% (absolute efficiency improvement) when preconditioned using ash derived from a fuel-borne catalyst (FBC) additive. The additive is typically used in diesel applications to enable diesel particulate filter (DPF) regeneration and can be added directly into the fuel tank of the vehicle. This novel result was compared with ash derived from lube oil componentry, which has previously been shown to improve filtration efficiency in GPFs. The lube oil-derived ash utilized in this work improved the filtration efficiency of the GPF by −30%, comparable to the ash derived from the FBC additive.
Journal Article

Willans Line-Based Equivalent Consumption Minimization Strategy for Charge-Sustaining Hybrid Electric Vehicle

2021-09-09
Abstract Energy management strategies for charge-sustaining hybrid electric vehicles reduce fuel consumption and maintain battery pack state of charge while meeting driver output power demand. The equivalent consumption minimization strategy is a real-time energy management strategy that makes use of an equivalence ratio to quantify electric power consumption in terms of fuel power consumption. The magnitude of the equivalence ratio determines the hybrid electric vehicle mode of operation and influences the ability of the energy management strategy to reduce fuel consumption as well as maintain the battery pack state of charge. The equivalent consumption minimization strategy in this article uses three Willans line models, which have an associated marginal efficiency and constant offset, to model the performance in the hybrid electric vehicle controller.
Journal Article

Wheel Chock Key Design Elements and Geometrical Profile for Truck Vehicle Restraint

2018-06-06
Abstract Wheel chocks are rather simple compliant mechanisms for stabilizing vehicles at rest. However, chocks must be carefully designed given the complex interaction between the chock and the tire/suspension system. Despite their importance for safety, literature is surprisingly limited in terms of what makes a wheel chock efficient. Using simple but reliable quasi-static mechanical models, this study identifies mechanical requirements that help to avoid a number of failure modes associated with many existing wheel chocks. Given that chock grounding is not always possible, a chock’s maximum restraining capacity is only obtained when the wheel is completely supported by the chock. A generic chock profile is proposed to achieve this objective while mitigating undesirable failure modes. The profile is based on fundamental mechanical principles and no assumption is made on the load interaction between the chock and the wheel.
Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

Visualization and Statistical Analysis of Passive Pre-chamber Knock in a Constant-volume Optical Engine

2023-10-20
Abstract This study investigates the behavior of pre-chamber knock in comparison to traditional spark ignition engine knock, using a modified constant-volume gasoline engine with an optically accessible piston. The aim is to provide a deeper understanding of pre-chamber knock combustion and its potential for mitigating knock. Five passive pre-chambers with different nozzle diameters, volumes, and nozzle numbers were tested, and nitrogen dilution was varied from 0% to 10%. The stochastic nature of knock behavior necessitates the use of statistical methods, leading to the proposal of a high-frequency band-pass filter (37–43 kHz) as an alternative pre-chamber knock metric. Pre-chamber knock combustion was found to exhibit fewer strong knock cycles compared to SI engines, indicating its potential for mitigating knock intensity. High-speed images revealed pre-chamber knock primarily occurs near the liner, where end-gas knock is typically exhibited.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
Journal Article

Vibration Mitigation of Commercial Vehicle Active Tandem Axle Suspension System

2022-01-24
Abstract A tandem axle suspension is an important system to the ride comfort and vehicle stability of and road damage experience from commercial vehicles. This article introduces an investigation into the use of a controlled active tandem axle suspension, which for the first time enables more effective control using two fuzzy logic controllers (FLC). The proposed controllers compute the actuator forces based on system outputs: displacements, velocities, and accelerations of movable parts of tandem axle suspension as inputs to the controllers, in order to achieve better ride comfort and vehicle stability and extend the lifetime of road surface than the conventional passive suspension. A mathematical model of a six-degree-of-freedom (6-DOF) tandem axle suspension system is derived and simulated using Matlab/Simulink software.
Journal Article

Vehicle Braking Performance Improvement via Electronic Brake Booster

2024-02-10
Abstract Throughout the automobile industry, the electronic brake boost technologies have been widely applied to support the expansion of the using range of the driver assist technologies. The electronic brake booster (EBB) supports to precisely operate the brakes as necessary via building up the brake pressure faster than the vacuum brake booster. Therefore, in this article a novel control strategy for the EBB based on fuzzy logic control (FLC) is developed and studied. The configuration of the EBB is established and the system model including the permanent magnet synchronous motor (PMSM), a two-stage reduction transmission (gears and a ball screw), a servo body, reaction disk, and the hydraulic load are modeled by MATLAB/Simulink. The load-dependent friction has been compensated by using Karnopp friction model. Due to the strong nonlinearity on the EBB components and the load-dependent friction, FLC has been used for the control algorithm.
Journal Article

Vehicle Aerodynamic Optimization: On a Combination of Adjoint Method and Efficient Global Optimization Algorithm

2019-04-26
Abstract This article presents a workflow for aerodynamic optimization of vehicles that for the first time combines the adjoint method and the efficient global optimization (EGO) algorithm in order to take advantage of both the gradient-based and gradient-free methods for aerodynamic optimization problems. In the workflow, the adjoint method is first applied to locate the sensitive surface regions of the baseline vehicle with respect to the objective functions and define a proper design space with reasonable design variables. Then the EGO algorithm is applied to search for the optimal site in the design space based on the expected improvement (EI) function. Such workflow has been applied to minimize the aerodynamic drag for a mass-produced electric vehicle. With the help of STAR-CCM+ and its adjoint solver, sensitive surface regions with respect to the aerodynamic drag are first located on the vehicle.
Journal Article

Validation of Crush Energy Calculation Methods for Use in Accident Reconstructions by Finite Element Analysis

2018-10-04
Abstract The crush energy is a key parameter to determine the delta-V in accident reconstructions. Since an accurate car crush profile can be obtained from 3D scanners, this research aims at validating the methods currently used in calculating crush energy from a crush profile. For this validation, a finite element (FE) car model was analyzed using various types of impact conditions to investigate the theory of energy-based accident reconstruction. Two methods exist to calculate the crush energy: the work based on the barrier force and the work based on force calculated by the vehicle acceleration times the vehicle mass. We show that the crush energy calculated from the barrier force was substantially larger than the internal energy calculated from the FE model. Whereas the crush energy calculated from the vehicle acceleration was comparable to the internal energy of the FE model.
Journal Article

Understanding the Influence of Seat Belt Geometries on Belt-to-Pelvis Angle Can Help Prevent Submarining

2022-04-13
Abstract The first objective of this study, addressed in Part 1, is to use finite element (FE) human body modeling (HBM) to evaluate the tangent of the Belt-to-Pelvis angle (tanθBTP) as a submarining predictor in frontal crashes for occupants in reclined seats. The second objective, addressed in Part 2, is to use this predictor to assess two technical solutions for reducing submarining risks for two different occupant anthropometries. In Part 1, tanθBTP (the lap belt penetration from the anterior superior iliac spine [ASIS] in the abdominal direction) was evaluated in impact simulations with varying seat belt anchor positions. Sled simulations with a 56 km/h full-frontal crash pulse were performed with the SAFER HBM morphed to the anthropometry of a small female and average male. A correlation was found between the submarining predictor and submarining.
Journal Article

Understanding the Impact of Standardized SAE Waveform Parameter Variation on Artificial Lightning Plasma, Specimen Loading, and Composite Material Damage

2020-02-18
Abstract Previous works have established strategies to model artificial test lightning plasma with specific waveform parameters and use the predicted plasma behavior to estimate test specimen damage. To date no computational works have quantified the influence of varying the waveform parameters on the predicted plasma behavior and resulting specimen damage. Herein test standard Waveform B has been modelled and the waveform parameters of “waveform peak,” “rise time,” and “time to reach the post-peak value” have been varied. The plasma and specimen behaviors have been modelled using the Finite Element (FE) method (a Magnetohydrodynamic FE multiphysics model for the plasma, a FE thermal-electric model for the specimen). For the test arrangements modelled herein, it has been found that “peak current” is the key parameter influencing plasma properties and specimen damage.
Journal Article

Understanding Conductive Layer Deposits: Test Method Development for Lubricant Performance Testing for Hybrid and Electric Vehicle Applications

2022-11-07
Abstract Advances in hybrid vehicles and electric vehicles (EV) are creating a need for a new generation of lubricants and new lubricant performance tests. Copper corrosion is one prominent concern for hybrid vehicles and EVs and is routinely assessed using a coupon test. This is characterized as metal dissolution, a surface tarnish, or a corrosion layer where a corrosion product remains on the surface and is characterized by a qualitative visual rating. This deficiency does not provide insight into the nature of the corrosion deposit. In an electric drive unit, there are multiple sources of the electric potential present, which can significantly alter the formation of a corrosion deposit which is not assessed in the coupon tests. The formation of a conductive corrosion deposit can result in catastrophic failure of the electric drive unit, either through direct shorting of the motor winding or failure of the power electronics.
Journal Article

U.S. Light-Duty Vehicle Air Conditioning Fuel Use and Impact of Solar/Thermal Control Technologies

2018-12-11
Abstract To reduce fuel consumption and carbon dioxide (CO2) emissions from mobile air conditioning (A/C) systems, “U.S. Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards” identified solar/thermal technologies such as solar control glazings, solar reflective paint, and active and passive cabin ventilation in an off-cycle credit menu. National Renewable Energy Laboratory (NREL) researchers developed a sophisticated analysis process to calculate U.S. light-duty A/C fuel use that was used to assess the impact of these technologies, leveraging thermal and vehicle simulation analysis tools developed under previous U.S. Department of Energy projects. Representative U.S. light-duty driving behaviors and weighting factors including time-of-day of travel, trip duration, and time between trips were characterized and integrated into the analysis.
Journal Article

Turbulent Flow Pressure Losses in Gasoline Particulate Filters

2019-08-19
Abstract Gasoline Particulate Filter (GPF) technology is the key method of meeting the new regulations for particulate matter emissions from gasoline cars. Computer-Aided Engineering is widely used for the design of such systems; thus the development of accurate models for GPFs is crucial. Most existing pressure loss models require experimental calibration of several parameters. These experiments are performed at room temperatures, or on an engine test bench, where gas properties cannot be fully controlled. This article presents pressure loss measurements for clean GPF cores performed with uniform airflow and temperatures up to 680°C. The flow regime in GPF is shown to be different to that in the Diesel Particulate Filters (DPF) due to high flow rates and temperatures. Therefore, most of the existing models are not suitable for design of the new generation of aftertreatment devices. To separate pressure loss contribution from different sources, unplugged filter cores are tested.
Journal Article

Trajectory Planning for Connected and Automated Vehicles: Cruising, Lane Changing, and Platooning

2021-10-22
Abstract Autonomy and connectivity are considered among the most promising technologies to improve safety and mobility and reduce fuel consumption and travel delay in transportation systems. In this paper, we devise an optimal control-based trajectory planning model that can provide safe and efficient trajectories for the subject vehicle while incorporating platoon formation and lane-changing decisions. We embed this trajectory planning model in a simulation framework to quantify its fuel efficiency and travel time reduction benefits for the subject vehicle in a dynamic traffic environment. Specifically, we compare and analyze the statistical performance of different controller designs in which lane changing or platooning may be enabled, under different values of time (VoTs) for travelers.
Journal Article

Topological Optimization of Non-Pneumatic Unique Puncture-Proof Tire System Spoke Design for Tire Performance

2023-07-18
Abstract Non-pneumatic tires (NPTs) have been widely used due to their advantages of no occurrence of puncture-related problems, no need of air maintenance, low rolling resistance, and improvement of passenger comfort due to its better shock absorption. It has a variety of applications as in earthmovers, planetary rover, stair-climbing vehicles, and the like. Recently, the unique puncture-proof tire system (UPTIS) NPT has been introduced for passenger vehicles segment. The spoke design of NPT-UPTIS has a significant effect on the overall working performance of tire. Optimized tire performance is a crucial factor for consumers and original equipment manufacturers (OEMs). Hence to optimize the spoke design of NPT-UPTIS spoke, the top and bottom curve of spoke profile have been described in the form of analytical equations. A generative design concept has been introduced to create around 50,000 spoke profiles.
Journal Article

Tire-Road Friction Coefficient Estimation Method Design for Intelligent Tires Equipped with Three-Axis Accelerometer

2021-05-05
Abstract Intelligent tires, as an emerging technology, have great potential for tire-road contact information identification and new vehicle active safety system design. In this article, a tire-road friction coefficient estimation method is proposed based on intelligent tires application with three-axis accelerometer. At first, a finite element tire model with an accelerometer is established using ABAQUS platform. Accelerometer body frame transformation is considered during the tire rotation. Subsequently, the contact patch length is determined according to the peak of the longitudinal acceleration profile. Meanwhile, tire lateral deflection is calculated from the tire lateral acceleration. By curve fitting the lateral deflection model with least square method, tire lateral force and the aligning moment are derived and then the friction coefficient is estimated via brush model.
Journal Article

Tire Deformation Modelling for High-Speed Open-Wheel Aerodynamic Investigations

2021-04-07
Abstract This article introduces a finite element (FE) approach to determine tire deformation and its effect on open-wheel race car aerodynamics at high vehicle velocities. In recent literature tire deformation was measured optically. Combined loads like accelerating at a corner exit are difficult to reproduce in wind tunnels and require several optical devices to measure the tire deformation. In contrast, an FE approach is capable of determining the tire deformation in combined load states accurately. Additionally, the temperature influence on tire deformation is investigated. The FE tire model was validated using three-dimensional (3D) scan measurements; stiffness measurements in the vertical, lateral, and longitudinal direction; and the change of loaded radius with speed at different loads, respectively. The deformed shape of the tire of the FE model was used in a computational fluid dynamics (CFD) simulation.
Journal Article

Time Domain Analysis of Ride Comfort and Energy Dissipation Characteristics of Automotive Vibration Proportional–Integral–Derivative Control

2024-02-05
Abstract A time domain analysis method of ride comfort and energy dissipation characteristics is proposed for automotive vibration proportional–integral–derivative (PID) control. A two-degrees-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined, and the Routh stability criterion method was introduced to assess the impact of PID control on vehicle stability. The PID control parameters are tuned using the differential evolution algorithm, and to improve the algorithm’s adaptive ability, an adaptive operator is introduced, so that the mutation factor of differential evolution algorithm can change with the number of iterations.
X