Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Just-in-Time” Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life

2009-04-20
2009-01-1384
Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle's life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These “Just-in-Time” methods provide maximum effective battery life while getting virtually the same electricity from the grid.
Technical Paper

Wireless Power Transfer for Electric Vehicles

2011-04-12
2011-01-0354
As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.
Technical Paper

What Fuel Economy Improvement Technologies Could Aid the Competitiveness of Light-Duty Natural Gas Vehicles?

1999-05-03
1999-01-1511
The question of whether increasing the fuel economy of light-duty natural gas fueled vehicles can improve their economic competitiveness in the U.S. market, and help the US Department of Energy meet stated goals for such vehicles is explored. Key trade-offs concerning costs, exhaust emissions and other issues are presented for a number of possible advanced engine designs. Projections of fuel economy improvements for a wide range of lean-burn engine technologies have been developed. It appears that compression ignition technologies can give the best potential fuel economy, but are less competitive for light-duty vehicles due to high engine cost. Lean-burn spark ignition technologies are more applicable to light-duty vehicles due to lower overall cost. Meeting Ultra-Low Emission Vehicle standards with efficient lean-burn natural gas engines is a key challenge.
Technical Paper

Wear Protection Properties of Flexible Fuel Vehicle (FFV) Lubricants

1993-10-01
932791
A laboratory wear test is used to evaluate the wear protection properties of new and used engine oils formulated for FFV service. Laboratory-blended mixtures of these oils with methanol and water have also been tested. The test consists of a steel ball rotating against three polished cast iron discs. Oil samples are obtained at periodic intervals from a fleet of 3.0L Taurus vehicles operating under controlled go-stop conditions. To account for the effects of fuel dilution, some oils are tested before and after a stripping procedure to eliminate gasoline, methanol and other volatile components. In addition to TAN and TBN measurements, a capillary electrophoresis technique is used to evaluate the formate content in the oils. The results suggest that wear properties of used FFV lubricants change significantly with their degree of usage.
Technical Paper

Viscosity Prediction for Multigrade Oils

1993-10-01
932833
The variation of viscosity with temperature and shear rate plays an important role in the analysis of lubrication of automotive systems. In this paper, a method for predicting the viscosity of non-Newtonian fluids, such as multigrade engine oils, over a wide range of temperatures and shear rates is outlined. This expression determines viscosity parameters for shear thinning fluids in terms of easily measured viscosity values at some reference state. A comparison of predictions with experimental data suggests that viscosity for multigrade engine oils can be predicted to within experimental uncertainty. The proposed method can be used in assessing lubricant viscosity at shear rates greater than 106 s-1, which are beyond the capability of current laboratory instruments. A comparative study with multigrade oils shows that performance at very high shear rates cannot be accurately gauged from high temperature, high shear (HTHS) viscosity measurements.
Technical Paper

Virtual Engine Dynamometer in Service Life Testing of Transmissions: A Comparison Between Real Engine and Electric Dynamometers as Prime Movers in Validation Test Rigs

2010-04-12
2010-01-0919
A test cell was developed for evaluating a 6-speed automatic transmission. The target vehicle had an internal combustion 5.4L gasoline V8 engine. An electric dynamometer was used to closely simulate the engine characteristics. This included generating mean torque from the ECU engine map, with a transient capability of 10,000 rpm/second. Engine inertia was simulated with a transient capability of 20,000 rpm/second, and torque pulsation was simulated individually for each piston, with a transient capability of 50,000 rpm/second. Quantitative results are presented for the correlation between the engine driven and the dynamometer driven transmission performance over more than 60 test cycles. Concerns about using the virtual engine in validation testing are discussed, and related to the high frequency transient performance required from the electric dynamometer. Qualitative differences between the fueled engine and electric driven testing are presented.
Technical Paper

Verification Testing of the 1970 Anti-Theft Steering Column

1970-02-01
700582
This paper outlines the key elements in a laboratory reliability verification test program for an automotive sub-system. Many of these elements are described in some detail through the various stages of development from prototype concept to production. By means of an actual case study, verification testing of the 1970 Ford Anti-Theft Steering Column, steps required to design tests which yield meaningful information and the rationale used to analyze the results are presented. The steering column on a late model automobile is a complex system which combines several functions and features; steering, shifting, warning devices (turn signal and emergency flashers), ignition switch, anti-theft devices plus several safety features. The effectiveness of the overall verification program is evaluated through the presentation of actual field-feedback results.
Technical Paper

Vehicle System Control for Start-Stop Powertrains with Automatic Transmissions

2013-04-08
2013-01-0347
The 2013 Ford Fusion will be launched with an optional automatic engine start-stop feature. To realize engine start-stop on a vehicle equipped with a conventional powertrain, there are two major challenges in the vehicle system controls. First, the propulsive torque delivery from a stopped engine has to be fast. The vehicle launch delay has to be minimized such that the corporate vehicle attributes can be met. Second, the fuel economy improvement offered by this technology has to justify the cost associated with it. In pursuing fuel economy, the driver's comfort and convenience should be minimally impacted. To tackle these challenges, a vehicle system control strategy has been developed to accurately interpret the driver's intent, monitor the vehicle subsystem's power demands, schedule engine automatic stop and re-start, and coordinate the fast and smooth torque delivery to the wheels.
Technical Paper

Vehicle Lateral Offset Estimation Using Infrastructure Information for Reduced Compute Load

2023-04-11
2023-01-0800
Accurate perception of the driving environment and a highly accurate position of the vehicle are paramount to safe Autonomous Vehicle (AV) operation. AVs gather data about the environment using various sensors. For a robust perception and localization system, incoming data from multiple sensors is usually fused together using advanced computational algorithms, which historically requires a high-compute load. To reduce AV compute load and its negative effects on vehicle energy efficiency, we propose a new infrastructure information source (IIS) to provide environmental data to the AV. The new energy–efficient IIS, chip–enabled raised pavement markers are mounted along road lane lines and are able to communicate a unique identifier and their global navigation satellite system position to the AV. This new IIS is incorporated into an energy efficient sensor fusion strategy that combines its information with that from traditional sensor.
Technical Paper

Vehicle Electrical System Computer Aided Design (VESCAD) Tool

1993-03-01
930841
The Vehicle Electrical System Computer Aided Design (VESCAD) tool is a means by which the vehicle electrical system, including all wiring and the components attached to wiring can be laid out over an outline of the planform (looking down on the vehicle) view of the vehicle. This graphical representation of the vehicle electrical system is linked to a database that contains the definition of all the wiring of the vehicle plus electrical component attributes. The vehicle electrical system can be composed and completely manipulated graphically, using a mouse, and the database is dynamically changed, including automatic re-routing of the wiring in the wiring harnesses. A complete series of reports can be generated once a vehicle electrical system is configured using VESCAD. All of the reports can be keyed by component(s), harness(es), subsystem(s) or the entire vehicle.
Journal Article

Vehicle Efficiency and Tractive Work: Rate of Change for the Past Decade and Accelerated Progress Required for U.S. Fuel Economy and CO2 Regulations

2016-04-05
2016-01-0909
A major driving force for change in light-duty vehicle design and technology is the National Highway Traffic Safety Administration (NHTSA) and the U.S. Environmental Protection Agency (EPA) joint final rules concerning Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emissions for model years 2017 (MY17) through 2025 (MY25) passenger cars and light trucks. The chief goal of this current study is to compare the already rapid pace of fuel economy improvement and technological change over the previous decade to the required rate of change to meet regulations over the next decade. EPA and NHTSA comparisons of the model year 2005 (MY05) US light-duty vehicle fleet to the model year 2015 (MY15) fleet shows improved fuel economy (FE) of approximately 26% using the same FE estimating method mandated for CAFE regulations. Future predictions by EPA and NHTSA concerning ensemble fleet fuel economy are examined as an indicator of required vehicle rate-of-change.
Technical Paper

Variable Displacement by Engine Valve Control

1978-02-01
780145
Intake and exhaust valve control has been combined with engine calibration control by an on-board computer to achieve a Variable Displacement Engine with improved BSFC during part throttle operation. The advent of the on-board computer, with its ability to provide integrated algorithms for the fast accurate flexible control of the entire powertrain, has allowed practical application of the valve disabler mechanism. The engine calibration basis and the displacement selection criteria are discussed, as are the fuel economy, emissions and behavior of a research vehicle on selected drive cycles ( Metro, Highway and Steady State ). Additionally, the impact upon vehicle driveability and other related subsystems ( e.g., transmission ) is addressed.
Technical Paper

Variability in Hydrocarbon Speciation Measurements at Low Emission (ULEV) Levels

1995-02-01
950781
As vehicle tailpipe emission levels decrease with improvements in emission control technology and reformulation of gasolines, exhaust hydrocarbon levels begin to approach the levels in ambient air. Hydrocarbon speciation at these low levels requires high sensitivity capillary gas chromatography methods. In this study, a mixture of “synthetic” exhaust was prepared at two concentration levels (approximately 5 ppm C and 10 ppm C), and was analyzed by the widely-used Auto/Oil Air Quality Improvement Research Program (AQIRP) Phase II (gas chromatography) speciation method with a sensitivity of 0.005 ppm C for individual species. The mixture at each concentration level, along with a sample of ambient air, was analyzed a total of 20 times on 10 separate days over a 2½ week period. Concentrations of total hydrocarbons (HCs) and individual species (using the AQIRP library) were measured; averages and standard deviations were calculated.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

Vacuum EGR Valve Actuator Model

1998-05-04
981438
As part of a general EGR system model, an adiabatic thermodynamic vacuum EGR valve actuator model was developed and validated. The long term goal of the work is improved system operation by correctly specifying and allocating EGR system component requirements.
Technical Paper

Understanding the Thermodynamics of Direct Injection Spark Ignition (DISI) Combustion Systems: An Analytical and Experimental Investigation

1996-10-01
962018
Direct-injection spark-ignition (DISI) engines have been investigated for many years but only recently have shown promise as a next generation gasoline engine technology. Much of this new enthusiasm is due to advances in the fuel injection system, which is now capable of producing a well-controlled spray with small droplets. A physical understanding of new combustion systems utilizing this technology is just beginning to occur. This analytical and experimental investigation with a research single-cylinder combustion system shows the benefits of in-cylinder gasoline injection versus injection of fuel into the intake port. Charge cooling with direct injection is shown to improve volumetric efficiency and reduce the mixture temperature at the time of ignition allowing operation with a higher compression ratio which improves the thermodynamic cycle efficiency.
Technical Paper

ULSD and B20 Hydrocarbon Impacts on EGR Cooler Performance and Degradation

2009-11-02
2009-01-2802
Exhaust gas recirculation (EGR) cooler fouling has emerged as an important issue in diesel engine development. Uncertainty about the level of impact that fuel chemistry may have upon this issue has resulted in a need to investigate the cooler fouling process with emerging non-traditional fuel sources to gage their impact on the process. This study reports experiments using both ultra-low sulfur diesel (ULSD) and 20% biodiesel (B20) at elevated exhaust hydrocarbon conditions to investigate the EGR cooler fouling process. The results show that there is little difference between the degradation in cooler effectiveness for ULSD and B20 at identical conditions. At lower coolant temperatures, B20 exhibits elevated organic fractions in the deposits compared with ULSD, but this does not appear to lead to incremental performance degradation under the conditions studied.
Technical Paper

U.S. Automotive Corrosion Trends at 5 & 6 Years

1989-12-01
892578
In 1985, the Body Division of the Automotive Corrosion and Prevention Committee of SAE (ACAP) concluded that an automotive body corrosion survey for public consumption was needed. The committee proceeded to develop a survey methodology and conducted surveys in the Detroit area every second year starting in 1985. The survey is a closed car parking lot survey of nineteen panels or partial panels checking for perforations, blisters and surface rust. Similar surveys have and will continue to be conducted at biyearly intervals for comparison purposes to track the results of industry wide corrosion protection “improvements”. This is a report of the results of the first three surveys. THE ACAP COMMITTEE BODY DIVISION has now completed the third in its series of biyearly surveys. It is now possible to see some very clear results of industry actions and some indication of future performance.
Technical Paper

Two Alternative, Dielectric-Effect, Flexible-Fuel Sensors

1992-02-01
920699
This paper describes two types of dielectric-effect sensors that may be used as alternatives to a dielectric-effect sensor using a single capacitor. In the first type, three capacitors are mounted in a compact module inserted into a vehicle fuel line. The three capacitors are connected together to form an electrical pi-filter network. This approach provides a large variation of output signal as the fuel changes from gasoline to methanol. The sensor can be designed to operate in the 1 to 20 MHz frequency range. The second type of sensor investigated uses a resonant-cavity structure. Ordinarily, sensors based on resonant cavities are useful only if the operating frequency is several hundred MHz or higher. The high relative dielectric constant of methanol allows useful sensors to be built using relatively short lengths of metal tubing for the cavities. For example, a sensor built using a fuel rail only 38.7 cm long operated in a frequency range from 31 to 52 MHz.
Technical Paper

Treatment of Natural Gas Vehicle Exhaust

1993-03-01
930223
The objective of this study is to investigate the removal of methane (CH4), nitric oxide (NO), and carbon monoxide (CO) from simulated natural gas vehicle (NGV) exhaust over a palladium catalyst. The effects of changes in space velocity and natural gas sulfur (S) content were studied. The study suggests that the NGV has to be operated slightly rich of stoichiometry to achieve simultaneous removal of the three constituents. The CH4 conversion decreases with an increase in the space velocity. The CO and NO conversions remain unaffected over the space velocity range (10,000 hr-1 to 100,000 hr-1) investigated. The presence of sulfur dioxide in the exhaust lowers the CH4 conversion and increases the CO conversion in the rich region. The NO conversion remains unaffected. Studies were conducted over model catalysts to investigate the modes of CH4 removal from the simulated NGV exhaust.
X