Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Validation Results from Using NADSdyna Vehicle Dynamics Simulation

1997-02-24
970565
This paper presents an evaluation of a vehicle dynamics model intended to be used for the National Advanced Driving Simulator (NADS). Dynamic validation for high performance simulation is not merely a comparison between experimental and simulation plots. It involves strong insight of vehicle's subsystems mechanics, limitations of the mathematical formulations, and experimental predictions. Lateral, longitudinal, and ride dynamics are evaluated using field test data, and analytical diagnostics. The evaluation includes linear and non-linear range of vehicle dynamics response.
Technical Paper

The Application of Fuzzy Logic to the Diagnosis of Automotive Systems

1997-02-24
970208
The evolution of the diagnostic equipment for automotive application is the direct effect of the implementation of sophisticated and high technology control systems in the new generation of passenger cars. One of the most challenging issues in automotive diagnostics is the ability to assess, to analyze, and to integrate all the information and data supplied by the vehicle's on-board computer. The data available might be in the form of fault codes or sensors and actuators voltages. Moreover, as environmental regulations get more stringent, knowledge of the concentration of different species emitted from the tailpipe during the inspection and maintenance programs can become of great importance for an integrated powertrain diagnostic system. A knowledge-based diagnostic tool is one of the approaches that can be adopted to carry out the challenging task of detecting and diagnosing faults related to the emissions control system in an automobile.
Technical Paper

Springback Prediction Using Combined Hardening Model

2000-10-03
2000-01-2659
The main objective of this paper is to simulate the springback using combined kinematic/isotropic hardening model. Material parameters in the hardening model are identified by an inverse method. Three-point bending test is conducted on 6022-T4 aluminum sheet. Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves is generated with the material parameters found in this way, which can be used with other plastic models. ABAQUS/Standard 5.8, which has the combined isotropic/kinematic hardening model, is used to simulate draw-bend of 6022-T4 series aluminum sheet. Absolute springback angles are predicted very accurately.
Technical Paper

Microstructural Characteristics of Die Cast AZ91D and AM60 Magnesium Alloys

1999-03-01
1999-01-0928
Die cast AZ91D and AM60 magnesium alloy components are finding increasing usage in automotive applications. Both hot and cold chamber die cast components of these alloys generally exhibit several common microstructural features, including “skin”, porosity banding, and porosity distributed about the component centerline. Methods for quantitatively characterizing these microstructural features are described and representative values for skin thicknesses, porosity band dimensions and porosity band locations from selected die castings will be presented. The expected influence of these common microstrucutral features on mechanical properties and acceptability of die cast magnesium components for given applications are discussed.
Technical Paper

Micro-Texture Tailored Friction Modeling and Discrete Application in Drawability Improvement

2010-04-12
2010-01-0982
Friction plays an important role in the deep drawing process. Previous research shows friction condition can be tailored by applying micro-textures on tooling surfaces. A friction model is proposed to reveal the mechanism of altering friction condition by configuring micro-texture. A discrete friction concept is proposed to improve drawability of sheet metal and demonstrates numerically on a non-symmetric geometry drawing process.
Technical Paper

Integrated Powertrain Diagnostic System: Linking On- and Off-Board Diagnostic Strategies

1996-02-01
960621
A number of automotive diagnostic equipment and procedures have evolved over the last two decades, leading to two generations of on-board diagnostic requirements (OBDI and OBDII), increasing the number of components and systems to be monitored by the diagnostic tools. The goal of On-Board Diagnostic is to alert the driver to the presence of a malfunction of the emission control system, and to identify the location of the problem in order to assist mechanics in properly performing repairs. The aim of this paper is to suggest a methodology for the development of an Integrated Powertrain Diagnostic System (EPDS) that can combine the information supplied by conventional tailpipe inspection programs with onboard diagnostics to provide fast and reliable diagnosis of malfunctions.
Technical Paper

Experimental Verification of Design Charts for Acoustic Absorbers

1997-05-20
971951
Design charts which predict acoustic absorption of porous insulators were verified experimentally using the two-microphone technique to measure the normal incidence absorption coefficient of three glass fiber materials in two different arrangements - a single-layer sample and a single layer in front of an air space, each backed by a rigid termination. The specific flow resistivities of the materials ranged from 2,000 to 52,000 mks rayls/m. Experimentally determined absorption coefficients were in agreement with those predicted by the design charts. The results indicate that these charts could be a useful tool in designing sound absorbers for practical applications.
Technical Paper

Empirical-Numerical Simulation Technique for Improving the Quality of Rolled Rods by Roll Pass Design

1992-02-01
920783
Improper roll pass designs can lead to either underfill which results in the formation of hairline cracks on the surface of the finished bars or overfill which results in roll overloading and the formation of fins. Therefore to reduce downtime, and improve yield and quality, it becomes important to design an acceptable roll pass in reasonable time. This paper presents a methodology for roll pass design which uses a three dimensional finite element technique along with an empirical procedure to arrive at an iterative scheme for reducing the number of passes and improving metal flow in the passes. This methodology is applied to improving an existing seven pass square - to - round rolling sequence, resulting in the reduction of the number of passes and improved distributions of effective strains in the rolled product.
Technical Paper

Effect of Forging Parameters on the Microstructure and Properties of Medium Carbon Microalloyed Steels

1993-03-01
930960
In recent years, efforts at reducing manufacturing costs for moderate to high strength steel components has provided a major driving force for the development, evaluation and application of high strength low alloy (HSLA) or microalloyed (MA) steels with ferrite-pearlite microstructure. In order to improve or control the final properties of a part forged from MA steels, the effects of thermo-mechanical processing on final properties need to be investigated. Isothermal upset tests were conducted, on two MA steels, TMS-80R (Vanadium MA steel) and TMS-80R+Ti (Titanium modified Vanadium MA steel). The flow behavior as well as preliminary relationships between processing conditions and microstructure were established for these two steels. Further, forging trials were conducted at a forging facility to obtain relationships between processing conditions and mechanical properties.
Technical Paper

An Investigation of the Effect of Post Forging Cooling Rate on the Microstructure and Properties of Microalloyed Steels

1993-03-01
930961
Medium carbon steels have been traditionally used for high strength forging applications. These steels contain several alloying elements like chromium, nickel and molybdenum which enable them to attain excellent hardenability and toughness upon heat treatment (quenching and tempering). Microalloyed (MA) medium carbon forging steels are gaining acceptance as a replacement for the traditional quenched and tempered grades as they do not require post forging heat treatment and hence represent substantial savings in manufacturing costs. Since the chief advantage of MA steels lies in the savings of heat treatment costs, the post-forging cooling rate is one of the primary parameters for controlling microstructure and toughness of the forged part. This paper investigates the effect of different cooling rates on the microstructure and mechanical properties of MA steels. Experiments were conducted by cooling test billets in different media.
Technical Paper

A Survey of Automotive Diagnostic Equipment and Procedures

1993-03-01
930769
The introduction of advanced electronic controls in passenger vehicles over the last decade has made traditional diagnostic methods inadequate to satisfy on- and off-board diagnostic needs. Due to the complexity of today's automotive control systems, it is imperative that appropriate diagnostic tools be developed that are capable of satisfying current and projected service and on-board requirements. The performance of available diagnostic and test equipment is still amenable to further improvement, especially as it pertains to the diagnosis of incipient and intermittent faults. It is our contention that significant improvement is possible in these areas. This paper briefly summarizes the evolution of on- and off-board diagnostic tools documented in the published literature, with the aim of giving the reader an understanding of their capabilities and limitations, and it further proposes alternative solutions that may be adopted as a basis for an advanced diagnostic instrument.
X