Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Virtual Testing and Simulation Environment [Micro-HiL] for Engine and Aftertreatment Calibration and Development -Part 2

2012-04-16
2012-01-0928
The growing complexity of powertrain control strategies, software, and hardware is proving to be a significant challenge to the engineering community with regard to managing effective optimization to meet the desired performance. With an increased emphasis on shorter development time and the use of additional sensors and actuators becoming common, the increased dependence on physical models and use of complex interdependent control systems demands a thorough system understanding. This also encourages the use of process improvement tools to assist in an effective engineering process. In this paper, such a tool is discussed in its second phase of development. The Micro-HiL system will be discussed over a wide scope that focuses on the interests of the calibration and development community. The purpose of this paper is to provide an update on the Phase 2 activity of Micro-HiL development; Phase 1 was discussed in-depth at the 2011 SAE World Congress [2011-01-0703].
Journal Article

OBD Diagnostic Strategies for LEVIII Exhaust Gas Aftertreatment Concepts

2015-04-14
2015-01-1040
Upcoming motor vehicle emission regulations, such as California's LEVIII, continue to tighten emission limitations in diesel vehicles. These increasingly challenging emission requirements will be met by improving the combustion process (reducing engine-out emissions), as well as improving the exhaust gas aftertreatment efficiency. Furthermore, intricate On-Board Diagnostics (OBD) systems are required to properly diagnose and meet OBD regulation requirements for complex aftertreatment systems. Under these conditions, current monitoring strategies are unable to guarantee reliable detection of partially failed systems. Additionally, new OBD regulations require aftertreatment systems to be diagnosed as a whole. This paper covers potential OBD strategies for LEVIII aftertreatment concepts with regard to regulation compliance and robustness, while striving to use existing sensor concepts.
Technical Paper

Influence of an Automatic Transmission with a Model Predictive Control and an On-Demand Clutch Actuator on Vehicle Fuel Consumption

2016-04-05
2016-01-1115
The demand for lower CO2 emissions requires not just the optimization of every single component but the complete system. For a transmission system, it is important to optimize the transmission hardware as we well as the interaction of powertrain components. For automatic transmission with wide ratio spreads, the main losses are caused by the actuation system, which can be reduced with use of ondemand actuation systems. In this paper, a new on-demand electromechanical actuation system with validation results on a clutch test bench is presented. The electro-mechanical actuator shows an increase in the efficiency of 4.1 % compared to the conventional hydraulic actuation in a simulated NEDC (New European Driving Cycle) cycle. This increase is based on the powerless end positions of the actuator (engaged and disengaged clutch). The thermal tension and wear are compensated with a disk spring. This allows a stable control over service life.
Technical Paper

Efficient Test Bench Operation with Early Damage Detection Systems

2019-09-09
2019-24-0192
The efficient operation of powertrain test benches in research and development is strongly influenced by the state of “health” of the functional test object. Hence, the use of Early Damage Detection Systems (EDDS) with Unit Under Test (UUT) monitoring is becoming increasingly popular. An EDDS should primarily avoid total loss of the test object and ensure that damaged parts are not completely destroyed, and can still be inspected. Therefore, any abnormality from the standard test object behavior, such as an exceeding of predefined limits, must be recognized at an early testing time, and must lead to a shutdown of the test bench operation. With sensors mounted on the test object, it is possible to isolate the damage cause in the event of its detection. Advanced EDDS configurations also optimize the predefined limits by learning new shutdown values according to the test object behavior within a very short time.
X