Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Using a DNS Framework to Test a Splashed Mass Sub-Model for Lagrangian Spray Simulations

2018-04-03
2018-01-0297
Numerical modeling of fuel injection in internal combustion engines in a Lagrangian framework requires the use of a spray-wall interaction sub-model to correctly assess the effects associated with spray impingement. The spray impingement dynamics may influence the air-fuel mixing and result in increased hydrocarbon and particulate matter emissions. One component of a spray-wall interaction model is the splashed mass fraction, i.e. the amount of mass that is ejected upon impingement. Many existing models are based on relatively large droplets (mm size), while diesel and gasoline sprays are expected to be of micron size before splashing under high pressure conditions. It is challenging to experimentally distinguish pre- from post-impinged spray droplets, leading to difficulty in model validation.
Technical Paper

Transient Drive Cycle Modeling of Supercharged Powertrains for Medium and Heavy Duty On-Highway Diesel Applications

2012-09-24
2012-01-1962
The problem with traditional drive cycle fuel economy analysis is that kinematic (backward looking) models do not account for transient differences in charge air handling systems. Therefore, dynamic (forward looking) 1D performance simulation models were created to predict drive cycle fuel economy which encompass all the transient elements of fully detailed engine and vehicle models. The transient-capable technology of primary interest was mechanical supercharging which has the benefit of improved boost response and "time to torque." The benefits of a supercharger clutch have also been evaluated. The current US class 6-8 commercial vehicle market exclusively uses turbocharged diesel engines. Three vehicles and baseline powertrains were selected based on a high-level review of vehicle sales and the used truck marketplace. Fuel economy over drive cycles was the principal output of the simulation work. All powertrains are based on EPA 2010 emission regulations.
Technical Paper

Trade-Off Analysis and Systematic Optimization of a Heavy-Duty Diesel Hybrid Powertrain

2020-04-14
2020-01-0847
While significant progress has been made in recent years to develop hybrid and battery electric vehicles for passenger car and light-duty applications to meet future fuel economy targets, the application of hybrid powertrains to heavy-duty truck applications has been very limited. The relatively lower energy and power density of batteries in comparison to diesel fuel and the operating profiles of most heavy-duty trucks, combine to make the application of hybrid powertrain for these applications more challenging. The high torque and power requirements of heavy-duty trucks over a long operating range, the majority of which is at constant cruise point, along with a high payback period, complexity, cost, weight and range anxiety, make the hybrid and battery electric solution less attractive than a conventional powertrain.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

Thermodynamical and Mechanical Approach Towards a Variable Valve Train for the Controlled Auto Ignition Combustion Process

2005-04-11
2005-01-0762
Controlled Auto Ignition (CAI) as a promising future combustion process is a concept to strongly reduce fuel consumption as well as NOx emissions. The acceptance and the potential of this combustion process depends on the possible CAI operation range in the engine map and the fuel consumption benefit, as well as the complexity of the variable valve train which is necessary to realize the CAI combustion process. The thermodynamic investigations presented in this paper were done on an engine equipped with an electromechanical valve train (EMVT), featuring Port Fuel Injection (PFI) and direct Injection. They show that the electromechanical valve train is an excellent platform for developing the CAI process. Controlled Auto Ignition has been realized with port fuel injection in a speed range between 1000 and 4500 rpm and in a load range between approximately 1 and 6 bar BMEP (about 5 bar BMEP for pressure gradients lower than 3 bar/°CA) depending on engine speed.
Journal Article

Thermal Shock Protection for Diesel Particulate Filters

2011-12-15
2011-01-2429
During a thermal regeneration of a Diesel particulate filter (DPF) the temperature inside the DPF may raise above critical thresholds in an uncontrolled way (thermal shock). Especially driving conditions with a comparable low exhaust gas mass flow and high oxygen content like idle speed may create a thermal shock. This paper presents a concept for an ECU software structure to prevent the DPF from reaching improper temperatures and the methodology in order to calibrate this ECU structure. The concept deals in general with a closed-loop control of the exhaust gas air-fuel-ratio during the critical engine operation phases. Those critical operation phases are identified at the engine test bench during “Drop-to-Idle” and “Drop-to-Overrun” experiments. The experiments show that those phases are critical having on the one hand a low exhaust gas mass flow and on the other hand a high oxygen percentage in the exhaust gas.
Technical Paper

The Potential of Small DI-Diesel Engines with 250 cm3/Cylinder for Passenger Car Drive Trains

1997-02-24
970838
The demand for fuel-efficient, low-displacement engines for future passenger car applications led to investigations with small DI diesel engines in the advanced engineering department at Mercedes-Benz. Single-cylinder tests were carried out to compare a 2-valve concept with 241 cm3 displacement with a 422 cm3 4-valve design, both operated with a common rail injection system. Mean effective pressures at full load were about 10 % lower with the smaller displacement. With such engines a specific power of 40 kW/I and a specific torque of about 140 Nm/I should be possible. In the current stage of optimization, penalties in fuel economy could be reduced down to values below 3 %. The “4-cylinder DI diesel engine with 1 liter displacement” is an interesting alternative to small 3 cylinder concepts with higher displacement per cylinder. An introduction into series production will not only depend on the potential for further improvement in fuel economy of such small cylinder units.
Technical Paper

Target Based Rapid Prototyping Control System for Engine Research

2006-04-03
2006-01-0860
Today's advanced technology engines have a high content of electronic actuation requiring sophisticated real-time embedded software sensing and control. To enable research on such engines, a system with a flexible engine control unit (ECU) that can be rapidly configured and programmed is desired. Such a system is being used in the Advanced Internal Combustion Engine (AICE) Laboratories at Michigan Tech University (MTU) for research on a multi-cylinder spark-ignited gasoline, a high pressure common rail diesel and a single cylinder alternative fuels research engine. The system combines a production ECU with a software development system utilizing Mathworks Simulink/Stateflow © modeling tools. The interface in the Simulink modeling environment includes a library of modeling and interface blocks to the production Operating System (OS), Low Level Drivers (LLD) and CAN-based calibration tool.
Technical Paper

Studies on Simulation and Real Time Implementation of LQG Controller for Autonomous Navigation

2021-04-06
2021-01-0108
The advancement in embedded systems and positional accuracy with base station GPS modules created opportunity to develop high performance autonomous ground vehicles. However, the development of vehicle model and making accurate state estimations play vital role in reducing the cross track error. The present research focus on developing Linear Quadratic Gaussian (LQG) with Kalman estimator for autonomous ground vehicle to track various routes, that are made with the series of waypoints. The model developed in the LQG controller is a kinematic bicycle model, which mimics 1/5th scale truck. Further, the cubic spline fit has been used to connect the waypoints and generate the continuous desired/target path. The testing and implementation has been done at APS labs, MTU on the mentioned vehicle to study the performance of controller. Python has been used for simulations, controller coding and interfacing the sensors with controller.
Technical Paper

Spray-Wall Dynamics of High-Pressure Impinging Combustion

2019-01-15
2019-01-0067
The fuel spray impingement on the piston head and/or chamber often occurs in compact IC engines. The impingement plays one of the key roles in combustion because it affects the air-fuel mixing process. In this study, the impinged combustion has been experimentally investigated to understand the mechanism and dynamics of flame-wall interaction. The experiments were performed in a constant volume combustion chamber over a wide range of ambient conditions. The ambient temperature was varied from 800 K to 1000 K and ambient gas oxygen was varied from 15% to 21%. Diesel fuel was injected with an injection pressure of 150 MPa into ambient gas at a density of 22.8 kg/m3. The natural luminosity technique was applied in the experiments to explore the impinged combustion process. High-speed images were taken using a high-speed camera from two different views (bottom and side). An in-house Matlab program was used to post-process the images.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Nozzle Included Angle Effects

2017-03-28
2017-01-0781
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost versus diesel fuel has increased interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and increase operating range while reduce harmful emissions and maintaining durability. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for light duty LD, and MD engines with widespread use in the US and Europe [1]. However, this technology exhibits poor thermal efficiency and is load limited due to knock phenomenon that has prohibited its use for HD engines. Spark Ignited Direct Injection (SIDI) can be used to create a partially stratified combustion (PSC) mixture of NG and air during the compression stroke.
Technical Paper

Schlieren and Mie Scattering Visualization for Single-Hole Diesel Injector under Vaporizing Conditions with Numerical Validation

2014-04-01
2014-01-1406
This paper reports an experimental and numerical investigation on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel spray under engine-like conditions. The high pressure diesel spray was investigated in an optically-accessible constant volume combustion vessel for studying the influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio). Measurements were carried out by a high-speed imaging system capable of acquiring Mie-scattering and schlieren in a nearly simultaneous fashion mode using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies were performed at three injection pressures (70, 120, and 180 MPa), 23.9 kg/m3 ambient gas density, and 900 K gas temperature in the vessel.
Technical Paper

Scalable Mean Value Modeling for Real-Time Engine Simulations with Improved Consistency and Adaptability

2019-04-02
2019-01-0195
This article discusses highly flexible and accurate physics-based mean value modeling (MVM) for internal combustion engines and its wide applicability towards virtual vehicle calibration. The requirement to fulfill the challenging Real Driving Emissions (RDE) standards has significantly increased the demand for precise engine models, especially models regarding pollutant emissions and fuel economy. This has led to a large increase in effort required for precise engine modeling and robust model calibration. Two best-practice engine modeling approaches will be introduced here to satisfy these requirements. These are the exclusive MVM approach, and a combination of MVM and a Design of Experiments (DOE) model for heterogeneous multi-domain engine systems.
Journal Article

Reduction of Parasitic Losses in Front-End Accessory Drive Systems: Part 2

2018-04-03
2018-01-0326
Demanding CO2 and fuel economy regulations are continuing to pressure the automotive industry into considering innovative powertrain and vehicle-level solutions. Powertrain engineers continue to minimize engine internal friction and transmission parasitic losses with the aim of reducing overall vehicle fuel consumption. In Part 1 of the study (2017-01-0893) described aspects of the test stand design that provides flexibility for adaptation to various test scenarios. The results from measurements for a number of front-end accessory drive (FEAD) components were shown in the context of scatterbands derived from multiple component tests. Key results from direct drive and belt-driven component tests were compared to illustrate the influence of the belt layout on mechanical efficiency of the FEAD system. The second part of the series will focus exclusively on the operation of the alternator. Two main elements of the study are discussed.
Technical Paper

Reduction of Hydrocarbon Emissions from SI-Engines by Use of Carbon Pistons

1995-10-01
952538
The use of pistons made of fine grain carbon was investigated in a spark-ignition engine within a European Community funded research project (TPRO-CT92-0008). Pistons were designed and manufactured and then tested in a single cylinder engine. Due to the carbon material's lower coefficient of thermal expansion the top land clearance between piston and cylinder can be reduced by a factor of three in comparison to standard aluminium designs. Under steady-state part-load operating conditions the emission of unburned hydrocarbons can be reduced by more than 15% compared to aluminium pistons, without significant penalties in NOx-emissions. Simultaneously, a small improvement in fuel economy of about 2% is observed. At full-load blow-by leakage flow is reduced by more than 50%. The piston crown temperature is about 30°C higher with the carbon piston than with the standard aluminium piston, due to the lower thermal conductivity of the carbon material.
Technical Paper

Process for Study of Micro-pilot Diesel-NG Dual Fuel Combustion in a Constant Volume Combustion Vessel Utilizing the Premixed Pre-burn Procedure

2019-04-02
2019-01-1160
A constant volume spray and combustion vessel utilizing the pre-burn mixture procedure to generate pressure, temperature, and composition characteristic of near top dead center (TDC) conditions in compression ignition (CI) engines was modified with post pre-burn gas induction to incorporate premixed methane gas prior to diesel injection to simulate processes in dual fuel engines. Two variants of the methane induction system were developed and studied. The first used a high-flow modified direct injection injector and the second utilized auxiliary ports in the vessel that are used for normal intake and exhaust events. Flow, mixing, and limitations of the induction systems were studied. As a result of this study, the high-flow modified direct injection injector was selected because of its controlled actuation and rapid closure. Further studies of the induction system post pre-burn were conducted to determine the temperature limit of the methane auto-ignition.
Technical Paper

Potential of Synthetic Fuels in Future Combustion Systems for HSDI Diesel Engines

2006-04-03
2006-01-0232
In view of limited crude oil resources, alternative fuels for internal combustion engines are currently being intensively researched. Synthetic fuels from natural gas offer a promising interim option before the development of CO2-neutral fuels. Up to a certain degree, these fuels can be tailored to the demands of modern engines, thus allowing a concurrent optimization of both the engine and the fuel. This paper summarizes investigations of a Gas-To-Liquid (GTL) diesel fuel in a modern, post-EURO 4 compliant diesel engine. The focus of the investigations was on power output, emissions performance and fuel economy, as well as acoustic performance, in comparison to a commercial EU diesel fuel. The engine investigations were accompanied by injection laboratory studies in order to assist in the performance analyses.
Technical Paper

Potential of Modern Diesel Engines with Lowest Raw Emissions - a Key Factor for Future CO2 Reduction

2009-01-21
2009-26-0025
The high-speed Dl-diesel engine has made a significant advance since the beginning of the 90's in the Western European passenger car market. Apart from the traditional advantage in fuel economy, further factors contributing to this success have been significantly improved performance and power density, as well as the permanent progress made in acoustics and comfort. In addition to the efforts to improve efficiency of automotive powertrains, the requirement for cleaner air increases through the continuous worldwide restriction of emissions by legislative regulations for diesel engines. Against the backdrop of global climate change, significant reduction of CO2 is observed. Hence, for the future, engine and vehicle concepts are needed, that, while maintaining the well-established attractive market attributes, compare more favorably with regard to fuel consumption.
Journal Article

Potential of Cellulose-Derived Biofuels for Soot Free Diesel Combustion

2010-04-12
2010-01-0335
Today's biofuels require large amounts of energy in the production process for the conversion from biomass into fuels with conventional properties. To reduce the amounts of energy needed, future fuels derived from biomass will have a molecular structure which is more similar to the respective feedstock. Butyl levulinate can be gained easily from levulinic acid which is produced by acid hydrolysis of cellulose. Thus, the Institute for Combustion Engines at RWTH Aachen University carried out a fuel investigation program to explore the potential of this biofuel compound, as a candidate for future compression ignition engines to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. Previous investigations identified most desirable fuel properties like a reduced cetane number, an increased amount of oxygen content and a low boiling temperature for compression ignition engine conditions.
Technical Paper

Performance and Emissions of Lignin and Cellulose Based Oxygenated Fuels in a Compression-Ignition Engine

2015-04-14
2015-01-0910
Lignocellulosic biomass consists of (hemi-) cellulose and lignin. Accordingly, an integrated biorefinery will seek to valorize both streams into higher value fuels and chemicals. To this end, this study evaluated the overall combustion performance of both cellulose- and lignin derivatives, namely the high cetane number (CN) di-n-butyl ether (DnBE) and low CN anisole, respectively. Said compounds were blended both separately and together with EN590 diesel. Experiments were conducted in a single cylinder compression ignition engine, which has been optimized for improved combustion characteristics with respect to low emission levels and at the same time high fuel efficiency. The selected operating conditions have been adopted from previous “Tailor-Made Fuels from Biomass (TMFB)” work.
X