Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual Testing and Simulation Environment [Micro-HiL] for Engine and Aftertreatment Calibration and Development -Part 2

2012-04-16
2012-01-0928
The growing complexity of powertrain control strategies, software, and hardware is proving to be a significant challenge to the engineering community with regard to managing effective optimization to meet the desired performance. With an increased emphasis on shorter development time and the use of additional sensors and actuators becoming common, the increased dependence on physical models and use of complex interdependent control systems demands a thorough system understanding. This also encourages the use of process improvement tools to assist in an effective engineering process. In this paper, such a tool is discussed in its second phase of development. The Micro-HiL system will be discussed over a wide scope that focuses on the interests of the calibration and development community. The purpose of this paper is to provide an update on the Phase 2 activity of Micro-HiL development; Phase 1 was discussed in-depth at the 2011 SAE World Congress [2011-01-0703].
Technical Paper

Variable compression in SI engines

2001-09-23
2001-24-0050
Downsizing is an effective way to further improve the efficiency of SI engines. To make most of this concept, the compression ratio has to be adjusted during engine operation. Thus, the efficiency disadvantages during part load can be eliminated. A fuel consumption reduction of up to 30% can be realized compared to naturally aspirated engines of the same power. After the assessment of several known concepts it turned out that the eccentric crankshaft positioning represents an appropriate solution which meets the requirements of good adjustability, unaltered inertia forces, low power demand of the positioning device and reasonable design effort. The basic challenges posed by the eccentric crankshaft positioning have been tackled, namely the crankshaft bearing and the integration of the newly developed power take-offs which have almost no influence on the base design.
Technical Paper

Type Analysis of EGR-Strategies for Controlled Auto Ignition (CAI) by Using Numerical Simulations and Optical Measurements

2006-04-03
2006-01-0630
The main assignment of Controlled Auto Ignition (CAI) operation range expansion is to reduce the burn rate or combustion noise at high load and to minimize misfire at low load. The potential of two principal EGR strategies is well known to initiate CAI in a wide range of operation map by using a variable train system: the Exhaust Port Recirculation (EPR) for higher part load and the Combustion Chamber Recirculation (CCR - also called Negative Valve Overlap) for lower part load. However the detailed comparison of the ignition phenomena with each EGR strategy has not been fully studied yet. In this paper, EPR and CCR were compared with same operational condition (engine speed and load). For the analysis, flame luminescence and Raman scattering method for optical measurement and STAR-CD (CD-adapco) for numerical simulation are used.
Journal Article

Two-Stage Variable Compression Ratio with Eccentric Piston Pin and Exploitation of Crank Train Forces

2009-04-20
2009-01-1457
By variation of the compression ratio the fuel consumption of high boosted gasoline engines can be reduced, due to operating with higher compression ratios at low load compared to an engine with fixed compression ratio. The two-stage VCR-system enables a high share of fuel saving potential relative to full variable systems. Considering a low cost manufacturability and a beneficial integratability into common engine architectures the length-adjustable conrod using an eccentric piston pin in the small eye has proved as the best concept. The adjustment is performed by a combination of gas and mass forces. This article describes the design of such a two-stage VCR-system as well as the functional testing under motored and fired engine operating conditions.
Technical Paper

Transient Drive Cycle Modeling of Supercharged Powertrains for Medium and Heavy Duty On-Highway Diesel Applications

2012-09-24
2012-01-1962
The problem with traditional drive cycle fuel economy analysis is that kinematic (backward looking) models do not account for transient differences in charge air handling systems. Therefore, dynamic (forward looking) 1D performance simulation models were created to predict drive cycle fuel economy which encompass all the transient elements of fully detailed engine and vehicle models. The transient-capable technology of primary interest was mechanical supercharging which has the benefit of improved boost response and "time to torque." The benefits of a supercharger clutch have also been evaluated. The current US class 6-8 commercial vehicle market exclusively uses turbocharged diesel engines. Three vehicles and baseline powertrains were selected based on a high-level review of vehicle sales and the used truck marketplace. Fuel economy over drive cycles was the principal output of the simulation work. All powertrains are based on EPA 2010 emission regulations.
Technical Paper

Trade-Off Analysis and Systematic Optimization of a Heavy-Duty Diesel Hybrid Powertrain

2020-04-14
2020-01-0847
While significant progress has been made in recent years to develop hybrid and battery electric vehicles for passenger car and light-duty applications to meet future fuel economy targets, the application of hybrid powertrains to heavy-duty truck applications has been very limited. The relatively lower energy and power density of batteries in comparison to diesel fuel and the operating profiles of most heavy-duty trucks, combine to make the application of hybrid powertrain for these applications more challenging. The high torque and power requirements of heavy-duty trucks over a long operating range, the majority of which is at constant cruise point, along with a high payback period, complexity, cost, weight and range anxiety, make the hybrid and battery electric solution less attractive than a conventional powertrain.
Technical Paper

The Potential of Small DI-Diesel Engines with 250 cm3/Cylinder for Passenger Car Drive Trains

1997-02-24
970838
The demand for fuel-efficient, low-displacement engines for future passenger car applications led to investigations with small DI diesel engines in the advanced engineering department at Mercedes-Benz. Single-cylinder tests were carried out to compare a 2-valve concept with 241 cm3 displacement with a 422 cm3 4-valve design, both operated with a common rail injection system. Mean effective pressures at full load were about 10 % lower with the smaller displacement. With such engines a specific power of 40 kW/I and a specific torque of about 140 Nm/I should be possible. In the current stage of optimization, penalties in fuel economy could be reduced down to values below 3 %. The “4-cylinder DI diesel engine with 1 liter displacement” is an interesting alternative to small 3 cylinder concepts with higher displacement per cylinder. An introduction into series production will not only depend on the potential for further improvement in fuel economy of such small cylinder units.
Technical Paper

Systematic Approach to Analyze and Characterize Pre-ignition Events in Turbocharged Direct-injected Gasoline Engines

2011-04-12
2011-01-0343
Downsized direct-injected boosted gasoline engines with high specific power and torque output are leading the way to reduce fuel consumption in passenger car vehicles while maintaining the same performance when compared to applications with larger naturally aspirated engines. These downsized engines reach brake mean effective pressure levels which are in excess of 20 bar. When targeting high output levels at low engine speeds, undesired combustion events called pre-ignition can occur. These pre-ignition events are typically accompanied by very high cylinder peak pressures which can lead to severe damage if the engine is not designed to withstand these high cylinder pressures. Although these pre-ignition events have been reported by numerous other authors, it seems that their occurrence is rather erratic which makes it difficult to investigate or reliably exclude them.
Technical Paper

Simulation and Optical Analysis of Oil Dilution in Diesel Regeneration Operation

2011-08-30
2011-01-1844
High levels of exhaust temperature or rich mixtures are necessary for the regeneration of today's diesel particulate filters or NOx catalysts. Therefore, late main injection or post injection is an effective strategy but leads to the well-known problem of lubricating oil dilution depending on the geometry, rail pressure and injection strategy. In this paper a method is developed to simulate fuel entrainment into the lubricating oil wall film in the diesel combustion chamber to predict oil dilution in an early design stage prior to hardware availability for durability testing. The simulation method integrates a newly developed droplet-film interaction model and is compared to results of an optical single-cylinder diesel engine and a similar thermodynamic single-cylinder test engine. Phenomena of diesel post injection like igniting early post injection or split post injections with short energizing times are considered in this paper.
Technical Paper

Relationship between Fuel Properties and Sensitivity Analysis of Non-Aromatic and Aromatic Fuels Used in a Single Cylinder Heavy Duty Diesel Engine

2011-04-12
2011-01-0333
Fuel properties are always considered as one of the main factors to diesel engines concerning performance and emission discussions. There are still challenges for researchers to identify the most correlating and non-correlating fuel properties and their effects on engine behavior. Statistical analyses have been applied in this study to derive the most un-correlating properties. In parallel, sensitivity analysis was performed for the fuel properties as well as to the emission and performance of the engine. On one hand, two different analyses were implemented; one with consideration of both, non-aromatic and aromatic fuels, and the other were performed separately for each individual fuel group. The results offer a different influence on each type of analysis. Finally, by considering both methods, most common correlating and non-correlating properties have been derived.
Technical Paper

Reduction of Hydrocarbon Emissions from SI-Engines by Use of Carbon Pistons

1995-10-01
952538
The use of pistons made of fine grain carbon was investigated in a spark-ignition engine within a European Community funded research project (TPRO-CT92-0008). Pistons were designed and manufactured and then tested in a single cylinder engine. Due to the carbon material's lower coefficient of thermal expansion the top land clearance between piston and cylinder can be reduced by a factor of three in comparison to standard aluminium designs. Under steady-state part-load operating conditions the emission of unburned hydrocarbons can be reduced by more than 15% compared to aluminium pistons, without significant penalties in NOx-emissions. Simultaneously, a small improvement in fuel economy of about 2% is observed. At full-load blow-by leakage flow is reduced by more than 50%. The piston crown temperature is about 30°C higher with the carbon piston than with the standard aluminium piston, due to the lower thermal conductivity of the carbon material.
Technical Paper

Prediction of Combustion Delay and -Duration of Homogeneous Charge Gasoline Engines based on In-Cylinder Flow Simulation

2009-06-15
2009-01-1796
In this paper a new approach is presented to evaluate the combustion behaviour of homogeneous gasoline engines by predicting burn delay and -duration in a way which can be obtained under the time constraints of the development process. This is accomplished by means of pure in-cylinder flow simulations without a classical combustion model. The burn delay model is based on the local distribution of the turbulent flow near the spark plug. It features also a methodology to compare different designs regarding combustion stability. The correlation for burn duration uses a turbulent characteristic number that is obtained from the turbulent flow in the combustion chamber together with a model for the turbulent burning velocity. The results show good agreement with the combustion process of the analyzed engines.
Technical Paper

Potentials of Variable Compressor Pre Swirl Devices in Consideration of Different Sealing Concepts

2013-04-08
2013-01-0934
For turbocharged engines high specific power and torque output as well as a fast transient response are mandatory. This conflict of aims can be solved by different charging systems, for example 2-stage charging or variable turbine geometry. At the Institute for Combustion Engines (VKA) at RWTH Aachen University another alternative, the variable compressor pre swirl, was investigated for solving this conflict of aims. Based on theoretical fundamentals the potentials of a variable compressor pre swirl for transient response, low end torque, specific power output and fuel consumption were presented. These theoretical potentials were explored on turbocharger -, engine - and vehicle test bench. An extended compressor map with partial higher compressor efficiency of up to 2% was detected. The outcome of this is an increase of up to 6% in low end torque, found on engine test bench. This effect could also be validated in 1D simulation.
Technical Paper

Potential of the Spray-guided Combustion System in Combination with Turbocharging

2008-04-14
2008-01-0139
Based on the TurboDISI engine presented earlier [1], [2], a new Spray Guided Turbo (SGT) concept with enhanced engine performance was developed. The turbocharged engine was modified towards utilizing a spray-guided combustion system with a central piezo injector location. Higher specific power and torque levels were achieved by applying specific design and cooling solutions. The engine was developed utilizing a state-of-the-art newly developed charge motion design (CMD) process in combination with single cylinder investigations. The engine control unit has a modular basis and is realized using rapid prototyping hardware. Additional fuel consumption potentials can be achieved with high load EGR, use of alternative fuels and a hybrid powertrain. The CO2 targets of the EU (120 g/km by 2012 in the NEDC) can be obtained with a mid-size vehicle applying the technologies presented within this paper.
Technical Paper

Potential Soot and CO Reduction for HSDI Diesel Combustion Systems

2006-04-03
2006-01-1417
The current direction for Diesel combustion system development is towards homogenization, in order to reduce particulate and NOx emissions. However, a strong increase of carbon monoxide emissions (CO) is frequently noted in combination with enhanced homogenization. Therefore, the current investigation focuses on a detailed analysis of the particulate - CO trade-off using a laser-optical and multidimensional CFD investigation of the combustion process of a swirl HSDI system. The CFD methodology involves reduced kinetics for soot formation and oxidation and a three-step CO model. These models are validated by a detailed comparison to optical measurements of flow, spray penetration and the spatial distribution of soot, temperature and oxygen concentration. The results obtained show that high concentrations of CO occur as an intermediate combustion reaction product. Subsequently, CO and soot are oxidized in large areas of the combustion chamber.
Technical Paper

Performance and Emissions of Lignin and Cellulose Based Oxygenated Fuels in a Compression-Ignition Engine

2015-04-14
2015-01-0910
Lignocellulosic biomass consists of (hemi-) cellulose and lignin. Accordingly, an integrated biorefinery will seek to valorize both streams into higher value fuels and chemicals. To this end, this study evaluated the overall combustion performance of both cellulose- and lignin derivatives, namely the high cetane number (CN) di-n-butyl ether (DnBE) and low CN anisole, respectively. Said compounds were blended both separately and together with EN590 diesel. Experiments were conducted in a single cylinder compression ignition engine, which has been optimized for improved combustion characteristics with respect to low emission levels and at the same time high fuel efficiency. The selected operating conditions have been adopted from previous “Tailor-Made Fuels from Biomass (TMFB)” work.
Journal Article

On the Measurement and Simulation of Flow-Acoustic Sound Propagation in Turbochargers

2019-06-05
2019-01-1488
Most of today’s internal combustion engines are turbocharged by combined radial compressors and turbines for downsizing. This mostly leads to reduced orifice noise of both intake and exhaust systems, but the detailed damping mechanisms remain yet unknown. Intake and exhaust systems are developed with 1D-CFD simulations, but validated acoustic sub-models for turbochargers are not yet available. Therefore the aim of this publication is studying the turbocharger’s silencing capabilities and subsequently develop new acoustic turbocharger models. The acoustic properties of the turbocharger can be well described by transmission loss. In addition to thermodynamic variations, parameter variations with wastegate and VTG systems were also performed. A total of four turbochargers of very different sizes were investigated. Low frequency attenuation is dominated by impedance discontinuities, increasing considerably with mass flow and pressure ratio.
Technical Paper

Novel Approach to Integration of Turbocompounding, Electrification and Supercharging Through Use of Planetary Gear System

2018-04-03
2018-01-0887
Technologies that provide potential for significant improvements in engine efficiency include, engine downsizing/downspeeding (enabled by advanced boosting systems such as an electrically driven compressor), waste heat recovery through turbocompounding or organic Rankine cycle and 48 V mild hybridization. FEV’s Integrated Turbocompounding/Waste Heat Recovery (WHR), Electrification and Supercharging (FEV-ITES) is a novel approach for integration of these technologies in a single unit. This approach provides a reduced cost, reduced space claim and an increase in engine efficiency, when compared to the independent integration of each of these technologies. This approach is enabled through the application of a planetary gear system. Specifically, a secondary compressor is connected to the ring gear, a turbocompounding turbine or organic Rankine cycle (ORC) expander is connected to the sun gear, and an electric motor/generator is connected to the carrier gear.
Journal Article

Mixture-Formation Analysis by PLIF in an HSDI Diesel Engine Using C8-Oxygenates as the Fuel

2015-04-14
2015-01-0960
With increasing interest in new biofuel candidates, 1-octanol and di-n-butylether (DNBE) were presented in recent studies. Although these molecular species are isomers, their properties are substantially different. In contrast to DNBE, 1-octanol is almost a gasoline-type fuel in terms of its auto-ignition quality. Thus, there are problems associated with engine start-up for neat 1-octanol. In order to find a suitable glow-plug position, mixture formation is studied in the cylinder under almost idle operating conditions in the present work. This is conducted by planar laser-induced fluorescence in a high-speed direct-injection optical diesel engine. The investigated C8-oxygenates are also significantly different in terms of their evaporation characteristics. Thus, in-cylinder mixture formation of these two species is compared in this work, allowing conclusions on combustion behavior and exhaust emissions.
Technical Paper

Lean NOx Trap for Heavy-Duty On-Road Applications - A Feasible Alternative?

2007-10-30
2007-01-4179
The implementation and development efforts of lean NOx trap catalysts for heavy-duty applications decreased a number of years ago. Most heavy-duty engine manufacturers realized that the system complexity as well as the durability of such a system does not allow large volume production without significant risk. The current consensus of the heavy-duty community is that for 2010 the SCR system will be the prime path to meet the 0.2 g/bHPhr NOx emission standard, although this is subject to adequate infrastructure investment and progress. As a low volume manufacturer, in order to comply with the 2007 heavy-duty phase-in emission standards, General Engine Products (a subsidiary of AM General LLC) integrated a NOx adsorber system on the Optimizer 6500 engine. This engine features split combustion chamber design, rotary fuel injection pump and operates with EGR.
X