Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

The Influence of Traffic Wakes on the Aerodynamic Performance of Heavy Duty Vehicles

2023-04-11
2023-01-0919
Road vehicles have been shown to experience measurable changes in aerodynamic performance when travelling in everyday safe-distance driving conditions, with a major contributor being the lower effective wind speed associated with the wakes from forward vehicles. Using a novel traffic-wake-generator system, a comprehensive test program was undertaken to examine the influence of traffic wakes on the aerodynamic performance of heavy-duty vehicles (HDVs). The experiments were conducted in a large wind tunnel with four primary variants of a high-fidelity 30%-scale tractor-trailer model. Three high-roof-tractor models (conventional North-American sleeper-cab and day-cab, and a zero-emissions-cab style) paired with a standard dry-van trailer were tested, along with a low-roof day-cab tractor paired with a flat-bed trailer.
Journal Article

Simulating Traffic-wake Effects in a Wind Tunnel

2023-04-11
2023-01-0950
Road-vehicle platooning is known to reduced aerodynamic drag. Recent aerodynamic-platooning investigations have suggested that follower-vehicle drag-reduction benefits persist to large, safe inter-vehicle driving distances experienced in everyday traffic. To investigate these traffic-wake effects, a wind-tunnel wake-generator system was designed and used for aerodynamic-performance testing with light-duty-vehicle (LDV) and heavy-duty-vehicle (HDV) models. This paper summarizes the development of this Road Traffic and Turbulence System (RT2S), including the identification of typical traffic-spacing conditions, and documents initial results from its use with road-vehicle models. Analysis of highway-traffic-volume data revealed that, in an uncongested urban-highway environment, the most-likely condition is a speed of 105 km/h with an inter-vehicle spacing of about 50 m.
Journal Article

Near-to-Far Wake Characteristics of Road Vehicles Part 2: Influence of Cross Winds and Free-Stream Turbulence

2021-04-06
2021-01-0949
Conventional assessments of the aerodynamic performance of ground vehicles have, to date, been considered in the context of a vehicle that encounters a uniform wind field in the absence of surrounding traffic. Recent vehicle-platooning studies have revealed measurable fuel savings when following other vehicles at inter-vehicle distances experienced in every-day traffic. These energy savings have been attributed in large part to the air-wakes of the leading vehicles. This set of three papers documents a study to examine the near-to-far regions of ground-vehicle wakes (one to ten vehicle lengths), in the context of their potential influence on other vehicles. Part two of this three-part paper documents the influence of the ambient winds on the development of the wake behind a vehicle.
Journal Article

Near-to-Far Wake Characteristics of Road Vehicles Part 1: Influence of Ground Motion and Vehicle Shape

2021-04-06
2021-01-0957
Conventional assessments of the aerodynamic performance of ground vehicles have, to date, been considered in the context of a vehicle that encounters a uniform wind field in the absence of surrounding traffic. Recent vehicle-platooning studies have revealed measurable fuel savings when following other vehicles at inter-vehicle distances experienced in every-day traffic. These energy savings have been attributed in large part to the air-wakes of the leading vehicles. This set of three papers documents a study to examine the near-to-far regions of ground-vehicle wakes (one to ten vehicle lengths), in the context of their potential influence on other vehicles. Part one of this three-part paper documents principally the influence of vehicle shape on the development of its wake.
Technical Paper

Large-Scale Vehicle-Wake Characterization Using a Novel, Single-Camera Particle Tracking Technique

2021-04-06
2021-01-0940
The aerodynamic forces experienced by vehicles depend on a variety of factors including wind direction, traffic, and roadside vegetation. Such complex boundary conditions often result in unsteady flow separation and the formation of large-scale coherent structures, which, in turn, significantly influence the aerodynamics of following vehicles. To gain a deeper understanding of the unsteady behaviour of such vehicle wakes under large-scale conditions, a time-resolved field measurement technique is required. Existing methods, such as tomographic particle image velocimetry and three-dimensional particle tracking velocimetry are unfortunately quite limited at these scales. Furthermore, such techniques require complex multi-camera calibrations, hazardous lasers, and optical access from many vantage points.
Technical Paper

Impact of Precipitation Drag on a Road Vehicle

2023-04-11
2023-01-0792
Road vehicles in the real world experience aerodynamic conditions that might be unappreciated and omitted in wind-tunnel experiments or in numerical simulations. Precipitation can potentially have an impact on the aerodynamics of road vehicles. An experimental study was devised to measure, in a wind tunnel, the impact of rain on the aerodynamic forces of the DrivAer research model. In this study, a rain system was commissioned to simulate natural rain in a wind-tunnel environment for full-scale rain rates between about 8 and 250 mm/hr. A 30%-scale DrivAer model was tested with and without precipitation for two primary configurations: the notch-back and estate-back variants. In addition, mirror-removal and covered-wheel-well configurations were investigated. The results demonstrate a distinct relationship between increasing rain intensities and increased drag of the model, providing evidence that road vehicles experience higher drag when travelling in precipitation conditions.
Journal Article

Aerodynamic Drag of Road Vehicles in Close Lateral Proximity

2023-04-11
2023-01-0952
Aerodynamic interaction between vehicles on a roadway can modify the fuel use and greenhouse gas emissions of the vehicle relative to their performance under isolated, uniform-wind conditions. A comprehensive wind-tunnel study was undertaken to examine changes to the aerodynamic drag experienced by vehicles in close proximity, in adjacent lanes. Wind-load measurements were conducted for two general configurations: 15%-scale testing with light-duty-vehicle (LDV) models, and 6.7%-scale testing with a heavy-duty vehicle (HDV) model. For the LDV study, a DrivAer model was tested with a proximate AeroSUV model or an Ahmed model at lateral distances representing 75%, 100%, and 125% of a typical highway lane spacing, and for longitudinal distances up to 2 vehicle lengths forward and back. Commensurate measurements were conducted for the AeroSUV model with the proximate DrivAer or Ahmed model.
X