Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Virtual Testing and Simulation Environment [Micro-HiL] for Engine and Aftertreatment Calibration and Development -Part 2

2012-04-16
2012-01-0928
The growing complexity of powertrain control strategies, software, and hardware is proving to be a significant challenge to the engineering community with regard to managing effective optimization to meet the desired performance. With an increased emphasis on shorter development time and the use of additional sensors and actuators becoming common, the increased dependence on physical models and use of complex interdependent control systems demands a thorough system understanding. This also encourages the use of process improvement tools to assist in an effective engineering process. In this paper, such a tool is discussed in its second phase of development. The Micro-HiL system will be discussed over a wide scope that focuses on the interests of the calibration and development community. The purpose of this paper is to provide an update on the Phase 2 activity of Micro-HiL development; Phase 1 was discussed in-depth at the 2011 SAE World Congress [2011-01-0703].
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

Scalable Mean Value Modeling for Real-Time Engine Simulations with Improved Consistency and Adaptability

2019-04-02
2019-01-0195
This article discusses highly flexible and accurate physics-based mean value modeling (MVM) for internal combustion engines and its wide applicability towards virtual vehicle calibration. The requirement to fulfill the challenging Real Driving Emissions (RDE) standards has significantly increased the demand for precise engine models, especially models regarding pollutant emissions and fuel economy. This has led to a large increase in effort required for precise engine modeling and robust model calibration. Two best-practice engine modeling approaches will be introduced here to satisfy these requirements. These are the exclusive MVM approach, and a combination of MVM and a Design of Experiments (DOE) model for heterogeneous multi-domain engine systems.
Technical Paper

Objectified Evaluation and Classification of Passenger Vehicles Longitudinal Drivability Capabilities in Automated Load Change Drive Maneuvers at Engine-in-the-Loop Test Benches

2020-04-14
2020-01-0245
The growing number of passenger car variants and derivatives in all global markets, their high degree of software differentiability caused by regionally different legislative regulations, as well as pronounced market-specific customer expectations require a continuous optimization of the entire vehicle development process. In addition, ever stricter emission standards lead to a considerable increase in powertrain hardware and control complexity. Also, efforts to achieve market and brand specific multistep adjustable drivability characteristics as unique selling proposition, rapidly extend the scope for calibration and testing tasks during the development of powertrain control units. The resulting extent of interdependencies between the drivability calibration and other development and calibration tasks requires frontloading of development tasks.
Technical Paper

Objectified Drivability Evaluation and Classification of Passenger Vehicles in Automated Longitudinal Vehicle Drive Maneuvers with Engine Load Changes

2019-04-02
2019-01-1286
To achieve global market and brand specific drivability characteristics as unique selling proposition for the increasing number of passenger car derivatives, an objectified evaluation approach for the drivability capabilities of the various cars is required. Thereto, it is necessary to evaluate the influence of different engine concepts in various complex and interlinked powertrain topologies during engine load change maneuvers based on physical criteria. Such an objectification approach enables frontloading of drivability related engineering tasks by the execution of drivability development and calibration work within vehicle subcomponent-specific closed-loop real-time co-simulation environments in early phases of a vehicle development program. So far, drivability functionalities could be developed and calibrated only towards the end of a vehicle development program, when test vehicles with a sufficient level of product maturity became available.
Technical Paper

Neural Network Modeling of Black Box Controls for Internal Combustion Engine Calibration

2024-07-02
2024-01-2995
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, modern engines feature increasingly number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation.
Technical Paper

Influence of Vehicle Operators and Fuel Grades on Particulate Emissions of an SI Engine in Dynamic Cycles

2018-04-03
2018-01-0350
With the implementation of the “Worldwide harmonized Light duty Test Procedure” (WLTP) and the highly dynamic “Real Driving Emissions” (RDE) tests in Europe, different engineering methodologies from virtual calibration approaches to Engine-in-the-loop (EiL) methods have to be considered to define and calibrate efficient exhaust gas aftertreatment technologies without the availability of prototype vehicles in early project phases. Since different types of testing facilities can be used, the effects of test benches as well as real and virtual vehicle operators have to be determined. Moreover, in order to effectively reduce harmful emissions, the reproducibility of test cycles is essential for an accurate and efficient application of exhaust gas aftertreatment systems and the calibration of internal combustion engines.
Technical Paper

In-Use Compliance Opportunity for Diesel Powertrains

2018-04-03
2018-01-0877
In-use compliance under LEV III emission standards, GHG, and fuel economy targets beyond 2025 poses a great opportunity for all ICE-based propulsion systems, especially for light-duty diesel powertrain and aftertreatment enhancement. Though diesel powertrains feature excellent fuel-efficiency, robust and complete emissions controls covering any possible operational profiles and duty cycles has always been a challenge. Significant dependency on aftertreatment calibration and configuration has become a norm. With the onset of hybridization and downsizing, small steps of improvement in system stability have shown a promising avenue for enhancing fuel economy while continuously improving emissions robustness. In this paper, a study of current key technologies and associated emissions robustness will be discussed followed by engine and aftertreatment performance target derivations for LEV III compliant powertrains.
Technical Paper

Exhaust-Aftertreatment Integrated, DoE-based Calibration

2012-04-16
2012-01-1303
For on- and off-highway applications in 2012/2014 new legislative emissions requirements will be applied for both European (EURO 6/stage 4) and US (US 2010/Tier4 final) standards. Specifically the NOX-emission limit will be lowered down to 0.46 g/kWh (net power ≻ 56 kW (EU)/130 kW (US) - 560 kW). While for the previous emissions legislation various ways could be used to stay within the emissions limits (engine internal and aftertreatment measures), DeNOX-aftertreatment systems will be mandatory to reach future limits. In these kinds of applications fuel consumption of the engines is a very decisive selling argument for customers. Total cost of ownership needs to be as low as possible. The trade-off between fuel consumption and NOX emissions forces manufacturers to find an optimal solution, especially with regard to increasing fuel prices. In state-of-the-art calibration processes the aftertreatment system is considered separately from the calibration of the thermodynamics.
Technical Paper

Development and Calibration of On-Board-Diagnostic Strategies Using a Micro-HiL Approach

2011-04-12
2011-01-0703
Beginning in 2010, implementation of on-board diagnostics (OBD) is mandatory for all the heavy-duty engine applications in the United States. The task of developing OBD strategies and calibrating them is a challenging one. The process involves a strong interdependency on base engine emissions, controls and regulations. On top of that the strategies developed as a result of the regulatory requirements need to go through a stringent and time-intensive process of software implementation and integration. The recent increasing demands to minimize the development process have been pushing the envelope on the methodologies used in developing the strategies and the calibration for robust monitoring. The goal of this paper is to provide a concise overview of a process utilized to help the development, testing and calibration of the OBD strategies on a 2010 model year heavy-duty diesel engine.
Technical Paper

Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System

2006-04-03
2006-01-0423
The U.S. Tier 2 emission regulations require sophisticated exhaust aftertreatment technologies for diesel engines. One of the projects under the U.S. Department of Energy's (DOE's) Advanced Petroleum Based Fuels - Diesel Emission Controls (APBF-DEC) activity focused on the development of a light-duty passenger car with an integrated NOx (oxides of nitrogen) adsorber catalyst (NAC) and diesel particle filter (DPF) technology. Vehicle emissions tests on this platform showed the great potential of the system, achieving the Tier 2 Bin 5 emission standards with new, but degreened emission control systems. The platform development and control strategies for this project were presented in 2004-01-0581 [1]. The main disadvantage of the NOx adsorber technology is its susceptibility to sulfur poisoning. The fuel- and lubrication oil-borne sulfur is converted into sulfur dioxide (SO2) in the combustion process and is adsorbed by the active sites of the NAC.
Journal Article

Analysis of the Emission Conversion Performance of Gasoline Particulate Filters Over Lifetime

2019-09-09
2019-24-0156
Gasoline particulate filters (GPF) recently entered the market, and are already regarded a state-of-the-art solution for gasoline exhaust aftertreatment systems to enable EU6d-TEMP fulfilment and beyond. Especially for coated GPF applications, the prognosis of the emission conversion performance over lifetime poses an ambitious challenge, which significantly influences future catalyst diagnosis calibrations. The paper presents key-findings for the different GPF application variants. In the first part, experimental GPF ash loading results are presented. Ash accumulates as thin wall layers and short plugs, but does not penetrate into the wall. However, it suppresses deep bed filtration of soot, initially decreasing the soot-loaded backpressure. For the emission calibration, the non-linear backpressure development complicates the soot load monitoring, eventually leading to compromises between high safety against soot overloading and a low number of active regenerations.
Technical Paper

Advanced Functional Pulse Testing of a Two-Stage VCR-System

2019-04-02
2019-01-1195
Two-stage variable compression ratio (VCR) systems for spark ignited engines offer a CO2 reduction potential of approx. 5%. Due to their modularity, connecting rod based VCR-systems can be integrated into existing engine assembly systems, where engines can be built in parallel with or without such a system, depending on performance and market requirements. In order to comply with the new RDE emission standards with high specific power engine variants, VCR systems enable high load engine operation without fuel enrichment. The interactions between the hydraulic-, mechanical - and oil supply systems of a VCR-system with variable connecting rod length are complex and require a well-developed and adapted layout of all subsystems. This demands the use of tailored measurement and simulation tools during the development and application phases. In this context, Advanced Functional Pulse Testing enables single-parameter analyses of VCR con rods.
X