Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Standard

USCAR INFLATOR TECHNICAL REQUIREMENTS AND VALIDATION

2004-06-24
HISTORICAL
USCAR24
This specification establishes the performance, and validation requirements for the inflator assembly used in airbag modules. Pretensioners are covered only in respect to their effluents as included in Section 3.2.3, Effluents and their autoignition performance as included in Section 3.2.5, Autoignition, High Temperature Oven Performance/Autoignition of Heat Aged Inflators
Standard

USCAR INFLATOR TECHNICAL REQUIREMENTS AND VALIDATION

2013-04-30
HISTORICAL
USCAR24-2
This specification establishes the performance, and validation requirements for the inflator assembly used in airbag modules. Seatbelt Pretensioners are covered as a reference only.
Standard

TEST PROCEDURE FOR ELECTRICAL GROUND ATTACHMENTS

2022-02-25
HISTORICAL
USCAR26
This test procedure is intended to evaluate and/or validate electrical ground schemes for use on the body or chassis. There are two classes based on the expected environmental conditions. Exposed Grounds can be located anywhere in the vehicle (except on the powertrain) and is the class for which most schemes should be tested. Unexposed Grounds can only be used in the passenger compartment or trunk and as such are special cases. This procedure as written is not intended for testing powertrain grounds where high temperatures and vibration levels may be encountered. These situations may require modifications to this procedure and are left to the Responsible Engineer to determine. This specification does not specifically address validation of terminal to wire electrical crimps. Crimps are tested to SAE/USCAR-21
Standard

Standard for Testing Automotive Miniature Bulbs

2002-04-15
HISTORICAL
USCAR3-2
The procedures contained in this specification cover the laboratory testing of miniature incandescent bulbs for use in automotive illumination and signaling applications.
Standard

STANDARD FOR D.C. BRUSH MOTOR – HVAC BLOWERS

1999-02-01
HISTORICAL
USCAR6
This standard sets forth the performance and durability requirements for 12-volt, D.C. brush-type electric motors used for automobile Heating, Ventilation, and Air Conditioning (HVAC) blowers and outlines Production Validation and Continuing Conformance testing.
Standard

STANDARD FOR D.C. BRUSH MOTOR - HVAC BLOWERS

2020-11-19
CURRENT
USCAR6-1
This standard sets forth the performance and durability requirements for 12-volt, D.C. brush-type electric motors used for automobile Heating, Ventilation, and Air Conditioning (HVAC) blowers and outlines Production Validation and Continuing Conformance testing.
Standard

Ergonomic Guidelines for Carts and Dollies

2015-03-13
CURRENT
USCAR41
This document describes the assessment methods and physical requirements associated with the manual handling of carts and dollies, specific to material handling systems. All possible designs and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an “off-the shelf” design, always consult the responsible Ergonomics Department. Force guidelines were primarily developed referencing the push/pull psychophysical Snook data contained in A Guide to Manual Materials Handling (second edition) by Mital, Nicholson and Ayoub (NY: Taylor & Francis, 1997). The force guidelines accommodate 75% of female capabilities and 99% of male capabilities. Factors that were included in the established guideline include: push / pull distances, vertical hand height, horizontal hand height, frequency and wheel / castor alignment and load rating. These factors were used to develop a conservative force guideline.
Standard

Avoidance of Hydrogen Embrittlement of Steel

2002-08-22
HISTORICAL
USCAR5-1
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel. It also defines the relief procedures required to minimize the risk of hydrogen embrittlement. SAE/USCAR-5 is intended to control the process.
Standard

Avoidance of Hydrogen Embrittlement of Steel

2007-03-01
HISTORICAL
USCAR5-2
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel and define the relief procedures required to minimize the risk of hydrogen embrittlement. It is intended to control the process. 1.1 Hydrogen embrittlement of steel, which can cause brittle fractures under stress, occurs as a result of the absorption of hydrogen during cleaning, phosphate coating and plating processes. The susceptibility to hydrogen embrittlement increases with increasing stress (internal or externally applied stress) and increasing material strength. 1.2 Hardness readings in this specification are in Vickers scale. SAE J417 should be referred to for conversion to other scales. NOTE 1: All references to temperatures relate to part core temperature and not the indicated oven air temperature. Statistical data of verifications in temperature at the center of the oven load and oven temperature shall be established to develop the oven profile.
Standard

AVOIDANCE OF HYDROGEN EMBRITTLEMENT OF STEEL

2012-07-01
HISTORICAL
USCAR5-4
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel and define the relief procedures required to minimize the risk of hydrogen embrittlement. It is intended to control the process.
Standard

AVOIDANCE OF HYDROGEN EMBRITTLEMENT OF STEEL

1997-11-01
HISTORICAL
USCAR5
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel and define the relief procedures required to minimize the risk of hydrogen embrittlement. It is intended to control the process.
X