Refine Your Search

Search Results

Viewing 1 to 14 of 14
Standard

Software Supportability Program Standard

2021-11-03
WIP
JA1004
In 1994 the SAE G-11 Reliability, Maintainability, Supportability, and Logistics (RMSL) Division chartered a software committee, G-11SW, to create several software standards and guidance documents across the RMSL spectrum, including a software supportability program standard. The committee was formed as a cross section of international representatives from commercial industries and governments. The G-11SW committee has attempted to develop a standard that is consistent with a SAE G-11 system level supportability program standard and augmented by necessary software-specific support information. The G-11SW committee believes this document reflects the best current commercial practices, and meets the objectives of the United States Department of Defense Acquisition Reform initiative.
Standard

Software Supportability Program Standard

2012-05-07
CURRENT
JA1004_201205
This SAE Standard defines the basic structural elements, and guidance on compilation and management, for a software supportability program. Software supportability considerations include initial design influence and through-life support embracing the operational use, post-delivery modification, and logistics management of software. This document requires that the processes of design, development, selection, and production of software include software supportability considerations, as relevant to particular project needs.
Standard

Software Supportability - An Overview

2021-11-03
WIP
AIR5121B
This SAE Aerospace Information Report (AIR) provides an overview of the issues relating to the support and supportability of software in computer-based systems. It has general applicability to all sectors of industry and commerce and to all types of equipment that contain software. The software support issues and activities summarized in this report are reasonably easy to comprehend. The reader should not be mislead into believing development of supportable software is easy to achieve. The target audience for the document includes software acquisition organizations, developers, supporters, and end-use customers.
Standard

Software Supportability - An Overview

2012-05-08
CURRENT
AIR5121A
This SAE Aerospace Information Report (AIR) provides an overview of the issues relating to the support and supportability of software in computer-based systems. It has general applicability to all sectors of industry and commerce and to all types of equipment that contain software. The software support issues and activities summarized in this report are reasonably easy to comprehend. The reader should not be mislead into believing development of supportable software is easy to achieve. The target audience for the document includes software acquisition organizations, developers, supporters, and end-use customers.
Standard

Software Reliability Program Standard

2021-11-03
WIP
JA1002
In 1994, the SAE G-11 Reliability, Maintainability, Supportability and Logistics (RMSL) Division chartered a software committee, G-11SW, to create several software standards and guidance documents across the RMSL spectrum, including a software reliability program standard. The committee was formed as a cross section of international representatives from commercial industries and governments. The G-11SW committee has attempted to develop a standard that is consistent with a SAE G-11 system level reliability program standard and augmented by necessary software-specific support information. The G-11SW committee believes this document reflects the best current commercial practices, and meets the objectives of the United States Department of Defense Acquisition Reform initiative.
Standard

Software Reliability Program Standard

2012-05-07
CURRENT
JA1002_201205
This SAE Standard provides a framework for the management of software reliability within system reliability requirements. It is based around the Software Reliability Plan and Software Reliability Case and emphasizes the importance of evaluating progress towards meeting software reliability requirements throughout the project life-cycle.
Standard

Software Reliability Program Implementation Guide

2021-11-03
WIP
JA1003
In 1994, the SAE G-11 Reliability, Maintainability, Supportability and Logistics (RMSL) Division chartered a software committee, G-11SW, to create several software standards and guidance documents across the RMSL spectrum, including a software reliability program standard and implementation guidelines. The committee was formed as a cross section of international representatives from commercial industries and governments. The G-11SW committee has developed a standard (JA1002) and these implementation guidelines (JA1003) that are consistent with a SAE G-11 system level reliability program standard (JA1000) and guidelines (JA1000-1), augmented by necessary software-specific information. The G-11SW committee believes these documents reflect the best current commercial practices, and meet the objectives of the United States Department of Defense Acquisition Reform initiative and the North Atlantic Treaty Organization (NATO) Reliability Program.
Standard

Software Reliability Program Implementation Guide

2012-05-07
CURRENT
JA1003_201205
This document provides methods and techniques for implementing a reliability program throughout the full life cycle of a software product, whether the product is considered as standalone or part of a system. This document is the companion to the Software Reliability Program Standard [JA1002]. The Standard describes the requirements of a software reliability program to define, meet, and demonstrate assurance of software product reliability using a Plan-Case framework and implemented within the context of a system application. This document has general applicability to all sectors of industry and commerce and to all types of equipment whose functionality is to some degree implemented by software components. It is intended to be guidance for business purposes and should be applied when it provides a value-added basis for the business aspects of development, use, and sustainment of software whose reliability is an important performance parameter.
Standard

Rms Terms and Definitions

2021-01-24
WIP
ARP5638A
The terms used in most engineering technologies tend to be physical characteristics such as speed, rate of turn, and fuel consumption. While they may require very careful definition and control of the way in which they are measured, the terms themselves are not subject to different interpretations. Reliability, Maintainability, and Supportability (RMS) however, use terms that are defined in a variety of ways with multiple interpretations. The variety of definitions given to a single term creates problems when trying to compare the performance of one system to another. To eliminate the confusion, a literature search that listed current and past RMS terms and definitions was conducted. The literature search included input from the US Military, UK Military, NATO, SAE, IEEE, NASA, ISO, University Research, and other publications. The object was to determine the common definition of Reliability Terms from a variety of sources.
Standard

Reliability Program Standard

2021-08-10
CURRENT
JA1000_202108
This SAE standard establishes the requirement for suppliers to plan a reliability program that satisfies the following three requirements: a The supplier shall ascertain customer requirements b The supplier shall meet customer requirements c The supplier shall assure that customer requirements have been met
Standard

Reliability Program Handbook

2013-05-01
HISTORICAL
TAHB0009
This handbook provides “how to” guidance to industry and government for the reliability Activities and Methods contained in ANSI/GEIA-STD-0009 for developing reliable products and systems, successfully demonstrating them during test and evaluation, and sustaining them throughout the system/product life cycle. ANSI/GEIA-STD-0009 requires the developers and customer/users working as a team to plan and implement a reliability program that provides systems/products that satisfy the user’s requirements and expectations using a systems engineering approach. The four Objectives of ANSI/GEIA-STD-0009 are listed below: Objective 1: Understand Customer/User Requirements and constraints. The team (developer, customer, and user), includes the Activities necessary to ensure that the user’s requirements and product needs are fully understood and defined, so that a comprehensive design specification and Reliability Program Plan are generated. Objective 2: Design and redesign for reliability.
Standard

Recommended RMS Terms and Parameters

2023-07-11
CURRENT
AIR4896A
The terms used in most engineering technologies tend to be physical characteristics such as speed, rate of turn, and fuel consumption. While they may require very careful definition and control of the way in which they are measured, the terms themselves are not subject to different interpretations. Reliability, maintainability and supportability (RMS) however, use terms that are mathematically defined. As a result, there are more than 2000 terms defined in just the documents reviewed so far, many of which have multiple interpretations. This proliferation of definitions of the terms leads to problems when one attempts to compare the performance of one system to another. For example, the RMS performance of a transport aircraft from the commercial arena is measured using metrics that are not the same as those for a fighter or attack aircraft from a military service.
Standard

RMS Terms and Definitions

2005-03-06
CURRENT
ARP5638
The terms used in most engineering technologies tend to be physical characteristics such as speed, rate of turn, and fuel consumption. While they may require very careful definition and control of the way in which they are measured, the terms themselves are not subject to different interpretations. Reliability, Maintainability, and Supportability (RMS) however, use terms that are defined in a variety of ways with multiple interpretations. The variety of definitions given to a single term creates problems when trying to compare the performance of one system to another. To eliminate the confusion, a literature search that listed current and past RMS terms and definitions was conducted. The literature search included input from the US Military, UK Military, NATO, SAE, IEEE, NASA, ISO, University Research, and other publications. The object was to determine the common definition of Reliability Terms from a variety of sources.
Standard

RECOMMENDED RMS TERMS AND PARAMETERS

1995-12-01
HISTORICAL
AIR4896
The terms used in most engineering technologies tend to be physical characteristics such as speed, rate of turn, and fuel consumption. While they may require very careful definition and control of the way in which they are measured, the terms themselves are not subject to different interpretations. Reliability, maintainability and supportability (RMS) however, use terms that are mathematically defined. As a result, there are more than 2000 terms defined in just the documents reviewed so far, many of which have multiple interpretations. This proliferation of definitions of the terms leads to problems when one attempts to compare the performance of one system to another. For example, the RMS performance of a transport aircraft from the commercial arena is measured using metrics that are not the same as those for a fighter or attack aircraft from a military service.
X