Refine Your Search

Topic

Author

Search Results

Standard

xEV Labels to Assist First and Second Responders, and Others

2023-09-06
WIP
J3108
This recommended practice prescribes clear and consistent labeling methodology for communicating important xEV high voltage safety information. Examples of such information include identifying key high voltage system component locations and high voltage disabling points. These recommendations are based on current industry best practices identified by the responder community. Although this recommended practice is written for xEVs with high voltage systems, these recommendations can be applied to any vehicle type.
Standard

Wrought Nickel and Nickel-Related Alloys

2018-02-15
CURRENT
J470_201802
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
Standard

Wrench, Spanner

2021-07-28
CURRENT
AS6018A
This SAE Aerospace Standard (AS) covers adjustable and non-adjustable spanner wrenches generally used for aerospace machinery maintenance and for tightening and loosening hose couplings and hydrant caps. Inclusion of dimensional data in this document is not intended to imply all of the products described therein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes.
Standard

Wrench, Spanner

2013-05-28
HISTORICAL
AS6018
This SAE Aerospace Standard (AS) covers adjustable and non-adjustable spanner wrenches generally used for aerospace machinery maintenance and for tightening and loosening hose couplings and hydrant caps. Inclusion of dimensional data in this document is not intended to imply all of the products described therein are stock production sizes. Consumers are requested to consult with manufacturers concerning lists of stock production sizes.
Standard

Wiring Aerospace Vehicle

2010-07-15
HISTORICAL
AS50881D
This specification covers all aspects from the selection through installation of wiring and wiring devices and optical cabling and termination devices used in aerospace vehicles. Aerospace vehicles include manned and unmanned airplanes, helicopters, lighter-than- air vehicles, missiles and external pods.
Standard

Wiring Aerospace Vehicle

2006-10-05
HISTORICAL
AS50881C
This specification covers all aspects from the selection through installation of wiring and wiring devices and optical cabling and termination devices used in aerospace vehicles. Aerospace vehicles include manned and unmanned airplanes, helicopters, lighter-than- air vehicles, missiles and external pods.
Standard

Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology

2023-09-18
WIP
J2954
The SAE J2954 standard establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless power transfer (WPT) of light-duty plug-in electric vehicles. The specification defines various charging levels between WPT 1-3 (3.7kVA to 11.1kVA). A standard for WPT based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. The specification supports home (private) charging and public wireless charging also establishing a universal Ground Assembly WPT 3 (GA) at 11.1kVA which is interoperable to Vehicle Assemblies (VA) WPT 1-3. SAE J2954 contains requirements for safety, performance, and interoperability of WPT. It also contains recommended methods for evaluating electromagnetic emissions, but the requirements and test procedures are controlled by regulatory bodies.
Standard

Wireless Power Transfer for Heavy-Duty Electric Vehicles

2022-12-16
CURRENT
J2954/2_202212
The published SAE J2954 standard established an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless power transfer (WPT) for light-duty plug-in electric vehicles. This SAE Information Report, SAE J2954/2, defines new power transfer levels in the higher power ranges needed for heavy-duty electric vehicles. This document addresses the requirements based on these charge levels and different vehicle applications as a first step in the process of completing a standard that the industry can use, both for private (fleet) and public wireless power transfer, including for charging electric vehicle batteries. This document is the first step in a process towards HD static and dynamic WPT. This document lacks specific requirements and solutions, for which field data is needed.
Standard

Windshield Washer Tubing

2001-08-07
HISTORICAL
J1037_200108
This SAE Standard covers nonreinforced, extruded, flexible tubing intended primarily for use as fluid lines for automotive windshield washer systems which conform to the requirements of SAE J942.
Standard

Windshield Defrosting Systems Test Procedure and Performance Requirements—Trucks, Buses, and Multipurpose Vehicles

2000-09-29
HISTORICAL
J381_200009
This SAE Recommended Practice establishes uniform test procedures and performance requirements for the defrosting system of enclosed cab trucks, buses, and multipurpose vehicles. It is limited to a test that can be conducted on uniform test equipment in commercially available laboratory facilities. Current engineering practice prescribes that for laboratory evaluation of defroster systems, an ice coating of known thickness be applied to the windshield and left- and right-hand side windows to provide more uniform and repeatable test results, even though under actual conditions such a coating would necessarily be scraped off before driving. The test condition, therefore, represents a more severe condition than the actual condition, where the defroster system must merely be capable of maintaining a cleared viewing area.
Standard

Windshield Defrosting Systems Test Procedure and Performance Requirements—Trucks, Buses, and Multipurpose Vehicles

2009-01-27
HISTORICAL
J381_200901
This SAE Recommended Practice establishes uniform test procedures and performance requirements for the defrosting system of enclosed cab trucks, buses, and multipurpose vehicles. It is limited to a test that can be conducted on uniform test equipment in commercially available laboratory facilities. Current engineering practice prescribes that for laboratory evaluation of defroster systems, an ice coating of known thickness be applied to the windshield and left- and right-hand side windows to provide more uniform and repeatable test results, even though under actual conditions such a coating would necessarily be scraped off before driving. The test condition, therefore, represents a more severe condition than the actual condition, where the defroster system must merely be capable of maintaining a cleared viewing area.
Standard

Windshield Defrosting Systems Test Procedure and Performance Requirements - Trucks, Buses, and Multipurpose Vehicles

2020-06-05
CURRENT
J381_202006
This SAE Recommended Practice establishes uniform test procedures and performance requirements for the defrosting system of enclosed cab trucks, buses, and multipurpose vehicles. It is limited to a test that can be conducted on uniform test equipment in commercially available laboratory facilities. For laboratory evaluation of defroster systems, current engineering practice prescribes that an ice coating of known thickness be applied to the windshield and left- and right-hand side windows to provide more uniform and repeatable test restults, even though—under actual conditions—such a coating would necessarily be scraped off before driving. The test condition, therefore, represents a more severe condition than the actual condition, where the defroster system must merely be capable of maintaining a cleared viewing area.
Standard

Welded and Cold-Drawn, SAE 1021 Carbon Steel Tubing Normalized for Bending, Single Flaring, Cold Forming, Welding, and Brazing

2020-05-26
CURRENT
J2467_202005
This SAE Standard covers normalized electric resistance welded, cold-drawn, single-wall, SAE 1021 carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, single flaring, cold forming, welding, and brazing. The grade of material produced to this specification is higher in carbon content and manganese content than the grade of material specified in SAE J525 and is intended to service higher pressure applications than equivalent sizes of SAE J525. Due to the higher carbon and manganese content, the forming characteristics of the finished tube are diminished versus the SAE J525 product. Special attention to the overall forming requirements of the finished assembly shall be taken into consideration when specifying material produced to this specification. Refer to SAE J2551-1 for additional design and fabrication guidance associated with this material.
Standard

Welded and Cold-Drawn, SAE 1021 Carbon Steel Tubing Normalized for Bending and Flaring

1999-04-16
HISTORICAL
J2467_199904
The SAE Standard covers normalized electric resistance welded, cold-drawn, single-wall, SAE 1021 carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, flaring, forming, and brazing. The grade of material produced to this specification is higher in carbon content and manganese content than the grade of material specified in SAE J525. The material produced to this specification is intended to service higher pressure applications than like sizes of SAE J525. Due to the higher carbon and manganese content, however, the forming characteristics of the finished tube is diminished somewhat when compared to SAE J525. Special attention to the overall forming requirements of the finished assembly should be taken into consideration when utilizing material produced to this specification.
Standard

Welded and Cold-Drawn, SAE 1021 Carbon Steel Tubing Normalized for Bending and Flaring

2008-02-08
HISTORICAL
J2467_200802
The SAE Standard covers normalized electric resistance welded, cold-drawn, single-wall, SAE 1021 carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, flaring, forming, and brazing. The grade of material produced to this specification is higher in carbon content and manganese content than the grade of material specified in SAE J525. The material produced to this specification is intended to service higher pressure applications than like sizes of SAE J525. Due to the higher carbon and manganese content, however, the forming characteristics of the finished tube is diminished somewhat when compared to SAE J525. Special attention to the overall forming requirements of the finished assembly should be taken into consideration when utilizing material produced to this specification.
Standard

Welded and Cold-Drawn, High Strength Low Alloy Steel Hydraulic Tubing, Sub-Critically Annealed for Bending and Flaring

2003-01-30
HISTORICAL
J2614_200301
This specification covers sub-critically annealed electric resistance welded and cold-drawn single-wall high strength low alloy steel tubing intended for use in hydraulic pressure lines and in other applications requiring tubing of a quality suitable for bending, flaring, cold forming, welding and brazing. The grade of material produced to this specification is of micro-alloy content and is considerably stronger and intended to service higher pressure applications than like sizes of the grades of material specified in SAE J525 and SAE J2467. Due to the alloy content of the material, the forming characteristics of the finished tube are equal to or better, when compared to SAE J525 and SAE J2467. Nominal reference working pressures for this tubing are listed in SAE J1065.
Standard

Welded Low-Carbon Steel Tubing Suitable for Bending, Flaring, Beading, Forming, and Brazing

2022-09-08
CURRENT
J526_202209
The SAE J526 Standard covers electric-resistance welded single-wall low-carbon steel pressure tubing intended for general automotive, refrigeration, hydraulic, and other similar applications requiring tubing of a quality suitable for bending, flaring, beading, forming, and brazing. Material produced to this specification is not intended to be used for single flare applications due to the potential leak path that would be caused by the ID weld bead or scarfed region. Assumption of risks when using this material for single flare applications shall be defined by agreement between the producer and tube purchaser. The material produced to this specification is intended to service pressure applications where severe forming and bending is not required.
X