Refine Your Search

Topic

Search Results

Standard

Wrought Nickel and Nickel-Related Alloys

2018-02-15
CURRENT
J470_201802
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
Standard

WROUGHT NICKEL AND NICKEL-RELATED ALLOYS

1976-07-01
HISTORICAL
J470_197607
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
Standard

WROUGHT NICKEL AND NICKEL-RELATED ALLOYS

1976-07-01
HISTORICAL
J470C_197607
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
Standard

WROUGHT COPPER AND COPPER ALLOYS

1976-06-01
HISTORICAL
J463D_197606
This standard* describes the chemical, mechanical, and dimensional requirements for a wide range of wrought copper and copper alloys used in the automotive and related industries.
Standard

Valve Seat Insert Information Report

2017-12-20
CURRENT
J1692_201712
This SAE Information Report provides engineers and designers with: a Types of valve seat inserts and their nomenclature b Valve seat insert alloy designations and their chemistries c Valve seat insert alloy metallurgy d Typical mechanical and physical properties of insert alloys e Recommended interference fits f Installation procedures g Application considerations
Standard

VALVE SEAT INSERT INFORMATION REPORT

1993-08-01
HISTORICAL
J1692_199308
This SAE Information Report provides engineers and designers with: a Types of valve seat inserts and their nomenclature b Valve seat insert alloy designations and their chemistries c Valve seat insert alloy metallurgy d Typical mechanical and physical properties of insert alloys e Recommended interference fits f Installation procedures g Application considerations
Standard

Sintered Carbide Tools

2018-01-09
CURRENT
J439_201801
This recommended practice covers methods for measuring or evaluating five properties or characteristics of sintered carbide which contribute significantly to the performance of sintered carbide tools. These properties are: hardness, specific gravity, apparent porosity, structure, and grain size. They are covered under separate headings below.
Standard

SINTERED CARBIDE TOOLS

1977-02-01
HISTORICAL
J439_197702
This recommended practice covers methods for measuring or evaluating five properties or characteristics of sintered carbide which contribute significantly to the performance of sintered carbide tools. These properties are: hardness, specific gravity, apparent porosity, structure, and grain size. They are covered under separate headings below.
Standard

Penetrating Radiation Inspection

2018-01-09
CURRENT
J427_201801
The purpose of this SAE Information Report is to provide basic information on penetrating radiation, as applied in the field of nondestructive testing, and to supply the user with sufficient information so that he may decide whether penetrating radiation methods apply to his particular inspection need. Detailed information references are listed in Section 2.
Standard

PENETRATING RADIATION INSPECTION

1991-03-01
HISTORICAL
J427_199103
The purpose of this SAE Information Report is to provide basic information on penetrating radiation, as applied in the field of nondestructive testing, and to supply the user with sufficient information so that he may decide whether penetrating radiation methods apply to his particular inspection need. Detailed information references are listed in Section 2.
Standard

Microscopic Determination of Inclusions in Steels

2018-01-10
CURRENT
J422_201801
This recommended microscopic practice for evaluating the inclusion content in steel has been developed as a practical method of quantitatively determining the degree of cleanliness of steel. This method has been established as a reasonable control for steel mill operations and acceptance for production manufacturing. It has been widely accepted for carbon and alloy steel bars, billets, and slabs. Exceptions are resulfurized grades which are outside the limits of these photomicrographs and the high carbon bearing quality steels which are generally classified using ASTM E 45-60T, Method A, Jernkontoret Charts.
Standard

Methods of Determining Hardenability of Steels

2009-03-27
HISTORICAL
J406_200903
This SAE Standard prescribes the procedure for making hardenability tests and recording results on shallow and medium hardening steels, but not deep hardening steels that will normally air harden. Included are procedures using the 25 mm (1 in) standard hardenability end-quench specimen for both medium and shallow hardening steels and subsize method for bars less than 32 mm (1-1/4 in) in diameter. Methods for determining case hardenability of carburized steels are given in SAE J1975. Any hardenability test made under other conditions than those given in this document will not be deemed standard and will be subject to agreement between supplier and user. Whenever check tests are made, all laboratories concerned must arrange to use the same alternate procedure with reference to test specimen and method of grinding for hardness testing.
Standard

Magnetic Particle Inspection

2018-01-10
CURRENT
J420_201801
The scope of this SAE Information Report is to provide general information relative to the nature and use of magnetic particles for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of magnetic particle testing, and as a guide to more extensive references.
Standard

MICROSCOPIC DETERMINATION OF INCLUSIONS IN STEELS

1983-12-01
HISTORICAL
J422_198312
This recommended microscopic practice for evaluating the inclusion content in steel has been developed as a practical method of quantitatively determining the degree of cleanliness of steel. This method has been established as a reasonable control for steel mill operations and acceptance for production manufacturing. It has been widely accepted for carbon and alloy steel bars, billets, and slabs. Exceptions are resulfurized grades which are outside the limits of these photomicrographs and the high carbon bearing quality steels which are generally classified using ASTM E 45-60T, Method A, Jernkontoret Charts.
Standard

MAGNETIC PARTICLE INSPECTION

1991-03-01
HISTORICAL
J420_199103
The scope of this SAE Information Report is to provide general information relative to the nature and use of magnetic particles for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of magnetic particle testing, and as a guide to more extensive references.
Standard

Leakage Testing

2018-01-10
CURRENT
J1267_201801
This information report provides basic information on leakage testing, as applied to nondestructive testing, and affords the user sufficient information so that he may decide whether leakage testing methods apply to his particular need. Detailed references are listed in Section 2.
X