Refine Your Search

Topic

Search Results

Standard

Vehicle Passenger Door Hinge Systems

2019-10-09
CURRENT
J934_201910
The scope of this SAE Recommended Practice is to establish recommended uniform test procedures and minimum static load requirements for vehicle passenger door hinge systems. Tests are described that can be conducted on test fixtures and equipment in laboratory test facilities. The test procedures and minimum performance requirements outlined in this document are based on currently available engineering data. It is intended that all portions of the document be periodically reviewed and revised as additional knowledge regarding vehicle hinge system performance under impact conditions is developed.
Standard

Vehicle Passenger Door Hinge Systems

1998-09-01
HISTORICAL
J934_199809
The scope of this SAE Recommended Practice is to establish recommended uniform test procedures and minimum static load requirements for vehicle passenger door hinge systems. Tests are described that can be conducted on test fixtures and equipment in laboratory test facilities. The test procedures and minimum performance requirements outlined in this document are based on currently available engineering data. It is intended that all portions of the document be periodically reviewed and revised as additional knowledge regarding vehicle hinge system performance under impact conditions is developed.
Standard

Vehicle Lift Points for Service Garage Lifting

2019-10-16
CURRENT
J2184_201910
This SAE Standard is directed at the proper communication of the lift points on the vehicle frame or underbody to commercial service personnel for the purpose of raising passenger vehicles, light trucks, and vans completely off the shop floor. To this end, vehicle manufacturers are guided in the proper design of a lift point label and lift points located on the body/frame for use by service garages.
Standard

Vehicle Lift Points for Service Garage Lifting

2007-09-27
HISTORICAL
J2184_200709
This SAE Standard is directed at the proper communication of the lift points on the vehicle frame or underbody to commercial service personnel for the purpose of raising passenger vehicles, light trucks, and vans completely off the shop floor. To this end, vehicle manufacturers are guided in the proper design of a lift point label and lift points located on the body/frame for use by service garages.
Standard

Vehicle Hood Latch Systems

1982-07-01
HISTORICAL
J362_198207
This SAE Recommended Practice establishes uniform test procedures for evaluating vehicle hood latch systems. It specifically pertains to those latch systems on hoods, which when the hood is fully opened (assuming the absence of hood stops) extend at any point above a horizontal plane through the uppermost edge of the steering wheel in the straight ahead driving position with the vehicle in a horizontal position. The following optional tests are described. a Vehicle Performance Tests—On-the-road evaluation under an established pattern of vehicle driving situations. b Laboratory Dynamic Tests—Dynamic simulation in the laboratory of the loads and forces which the latch system encounters on the road. c Laboratory Static Tests—Simplified test procedures intended to permit static simulation of the loads which road tests have indicated the latch system may encounter. The test procedures outlined in this recommended practice are based on current engineering test methods.
Standard

Vehicle Hood Latch Systems

1997-06-03
CURRENT
J362_199706
This SAE Recommended Practice establishes uniform test procedures for evaluating vehicle hood latch systems. It specifically pertains to those latch systems on hoods, which when the hood is fully opened (assuming the absence of hood stops) extend at any point above a horizontal plane through the uppermost edge of the steering wheel in the straight ahead driving position with the vehicle in a horizontal position. The test procedures outlined in this recommended practice are based on current engineering test methods. It is intended that all portions of this report will be periodically reviewed and revised as additional knowledge regarding vehicle hood latch system performance under dynamic conditions is developed.
Standard

VEHICLE PASSENGER DOOR HINGE SYSTEMS

1969-09-01
HISTORICAL
J934A_196909
The scope of this SAE Recommended Practice is to establish recommended uniform test procedures and minimum static load requirements for vehicle passenger door hinge systems. Tests are described that can be conducted on test fixtures and equipment in lab oratory test facilities. The test procedures and minimum performance requirements outlined in this recommended practice are based on currently available engineering data. It is intended that all portions of the recommended practice be periodically reviewed and revised as additional knowledge regarding vehicle hinge system performance under impact conditions is developed.
Standard

VEHICLE PASSENGER DOOR HINGE SYSTEMS

1965-07-01
HISTORICAL
J934_196507
The scope of this SAE Recommended Practice is to establish recommended uniform test procedures and minimum static load requirements for vehicle passenger door hinge systems. Tests are described that can be conducted on test fixtures and equipment in laboratory test facilities. The test procedures and minimum performance requirements outlined in this recommended practice are based on currently available engineering data. It is intended that all portions of the recommended practice be periodically reviewed and revised as additional knowledge regarding vehicle hinge system performance under impact conditions is developed.
Standard

VEHICLE HOOD LATCH SYSTEMS

1969-01-01
HISTORICAL
J362_196901
This SAE Recommended Practice establishes uniform test procedures for evaluating vehicle hood latch systems. It specifically pertains to those latch systems on hoods, which when the hood is fully opened (assuming the absence of hood stops) extend at any point above a horizontal plane through the uppermost edge of the steering wheel in the straight ahead driving position with the vehicle in a horizontal position. The following optional tests are described. (a) Vehicle Performance Tests—On-the-road evaluation under an established pattern of vehicle driving situations. (b) Laboratory Dynamic Tests—Dynamic simulation in the laboratory of the loads and forces which the latch system encounters on the road. (c) Laboratory Static Tests—Simplified test procedures intended to permit static simulation of the loads which road tests have indicated the latch system may encounter. The test procedures outlined in this recommended practice are based on current engineering test methods.
Standard

Uniform Reference and Dimensional Guidelines for Collision Repair

2019-10-28
CURRENT
J1828_201910
This SAE Recommended Practice defines, for vehicle manufacturers and collision information and equipment providers, the types of vehicle dimensional data needed by the collision repair industry and aftermarket equipment modifiers to properly perform high-quality repairs to damaged vehicles. Both bodyframe and unitized vehicles, including passenger cars and light trucks, are addressed.
Standard

Uniform Reference and Dimensional Guidelines for Collision Repair

2014-06-26
HISTORICAL
J1828_201406
This SAE Recommended Practice defines, for vehicle manufacturers and collision information and equipment providers, the types of vehicle dimensional data needed by the collision repair industry and aftermarket equipment modifiers to properly perform high-quality repairs to damaged vehicles. Both bodyframe and unitized vehicles, including passenger cars and light trucks, are addressed.
Standard

Towing Equipment Ratings and Practices

1999-08-01
HISTORICAL
J2512_199908
This SAE Recommended Practice applies to all trucks that are equipped with armlift bodies, carrier bodies, wheel lift bodies, wrecker, and underlift bodies. Additional rating methods are provided for tow slings, truck hitches, and chain assemblies.
Standard

Towing Equipment Ratings and Practices

2019-10-24
CURRENT
J2512_201910
This SAE Recommended Practice applies to all trucks that are equipped with armlift bodies, carrier bodies, wheel lift bodies, wrecker, and underlift bodies. Additional rating methods are provided for tow slings, truck hitches, and chain assemblies.
Standard

The Effects of Front-mounted Accessories on Air Bag Sensors and Crashworthiness

1997-10-01
HISTORICAL
J2431_199710
Almost all light trucks now are being manufactured with at least a driver side air bag and all will have dual air bags by 1998. The driving forces behind this feature are occupant safety, federal regulations, and competition in the industry. Along with the booming popularity of pickups and SUVs, they are commonly accessorized with a wide variety of products. Many accessories for four-wheel drives in particular are mounted on the front of the vehicle. These products include grille/brush guards, winches, snow plows, replacement bumpers, bicycle carriers, etc. Concerns have arisen over the compatibility of these accessories with the vehicle’s air bag system. The vehicle manufacturers are concerned because of their huge investment in design and crash test verification of the complete vehicle system and keen awareness of the federal regulations. The crushability of the front bumper and supporting structure are key elements in the system, so alterations to that area become logical concerns.
Standard

The Effects of Front-Mounted Accessories on Air Bag Sensors and Crashworthiness

2019-10-09
CURRENT
J2431_201910
Almost all light trucks now are being manufactured with at least a driver side air bag and all will have dual air bags by 1998. The driving forces behind this feature are occupant safety, federal regulations, and competition in the industry. Along with the booming popularity of pickups and SUVs, they are commonly accessorized with a wide variety of products. Many accessories for four-wheel drives in particular are mounted on the front of the vehicle. These products include grille/brush guards, winches, snow plows, replacement bumpers, bicycle carriers, etc. Concerns have arisen over the compatibility of these accessories with the vehicle’s air bag system. The vehicle manufacturers are concerned because of their huge investment in design and crash test verification of the complete vehicle system and keen awareness of the federal regulations. The crushability of the front bumper and supporting structure are key elements in the system, so alterations to that area become logical concerns.
Standard

Starter Armature Remanufacturing Procedures

2008-11-26
CURRENT
J2240_200811
These remanufacturing procedures are recommended guidelines for use by remanufacturers of starter armatures to promote consistent reliability, durability, and safety of remanufactured starters. Installation of remanufactured or rebuilt products is often an economical way to repair a vehicle even though the products may not be identical to original equipment parts. Before processing any part, a remanufacturer should determine if the original design and present condition of the core is suitable for remanufacturing so as to provide durable operation of the part as well as acceptable performance when installed on the vehicle. The remanufacturer should also consider the safety aspects of the product and any recommendations of the original manufacturers related to remanufacturing or rebuilding their product.
Standard

Seat Belt Restraint System Hardware - Glossary of Terms

2022-07-08
CURRENT
J1803_202207
This SAE Recommended Practice provides a Glossary of Terms commonly used to describe Seat Belt Restraint Systems Hardware and their function. These terms are currently defined in various SAE Recommended Practices but are sometimes inconsistent. It is intended for this document to supersede the definitions found in separate SAE Recommended Practices.
Standard

Seat Belt Restraint System Hardware - Glossary of Terms

2013-01-08
HISTORICAL
J1803_201301
This SAE Recommended Practice provides a Glossary of Terms commonly used to describe Seat Belt Restraint Systems Hardware and their function. These terms are currently defined in various SAE Recommended Practices but are sometimes inconsistent. It is intended for this document to supersede the definitions found in separate SAE Recommended Practices.
X