Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

“Rigidization-on-Command”™ (ROC) Resin Development for Lightweight Isogrid Booms with MLI

2003-07-07
2003-01-2342
The “Rigidization-on-Command”™ (ROC™) resin development has focused on the development of resin systems that use UV light cure for rigidization. Polymeric sensitizers have been incorporated into the resin formulations to promote cure using Pen-Ray lamps and UV light-emitting diodes (LED's). Formulations containing the polymeric sensitizers were examined by FTIR and DSC. Complete cure was observed after 15 min. exposure with the Pen-Ray lamps. Performance of the Pen-Ray lamps and UV LEDs was thoroughly characterized. Thermal models were developed to optimize the performance of the of the MLI insulation thermal oven used for orbital cure of the boom. Results show that -12°C is the lowest temperature required for cure of the ROC™ resin systems.
Technical Paper

Orbital Thermal Analyses of “Rigidization-on-Command” (ROC) Materials for Inflatable Spacecraft

2001-07-09
2001-01-2220
Large space-deployed antennas are of interest in the NASA, military, and commercial sectors for a variety of applications that include communications, long baseline interferometry, microspacecraft, and space-based radar. A need exists for a controlled, clean rigidization technology to harden inflatable spacecraft once they have achieved the required shape. This study addressed the space environment for typical orbits, development of UV curing cationic epoxy resin systems, mechanical properties of UV cured composites, and fabrication of demonstration tubes using the photocurable resin technology. Transient thermal analyses were run on a candidate tube configuration to determine the power required for internal UV lamps to initiate cure (15.50 W/m2) and the temperature range of the thermal processing windows.
X