Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Thermal Design of CryoSat, the first ESA Earth Explorer Opportunity Mission

2003-07-07
2003-01-2467
CryoSat is the first satellite of ESA's Living Planet Programme realised in the framework of the Earth Explorer Opportunity Missions. CryoSat is a radar altimeter mission dedicated to determine trends in the ice masses of the Earth. The overall spacecraft configuration was driven by the budget constraints applicable for the opportunity mission, the high inclination orbit with drifting orbit plane and the stringent stability requirements for the radar altimeter antennas. Innovative thermal design solutions were needed for the following items: The instrument antennas have to comply with very stringent pointing stability requirements. The star trackers need to be mounted at a thermally adverse position and still have to be maintained on low temperature levels.
Technical Paper

METOP PLM Thermal Balance and Thermal Vacuum Test

2003-07-07
2003-01-2424
This paper reports on the thermal testing of METOP (METerological OPerational satellite) Payload Module Engineering Model, conducted in May/June 2001 at ESTEC’s Large Space Simulator (LSS). The paper describes the logic for the selection of the test configuration, the test phases and the performed test sequences. The test results are presented and the correlation results between predicted and measured temperatures are discussed.
Technical Paper

Lessons Learned from the METOP Thermal Analysis and Testing

2003-07-07
2003-01-2461
Metop (METeorological OPerational satellite) is a series of three satellites designed to monitor the climate and improve weather forecasting. This paper describes the thermal analysis, thermal testing performed, and relevant lessons learned. For the thermal analysis campaigns it focuses on: exchange and correlation of reduced thermal mathematical models established in various software formats sizes and content of the models, in particular automatic generation of reduced models from the detailed models uncertainties definitions of thermal interfaces The lessons learned from the thermal testing campaigns apply to: selection of test environment, using solar simulation and/or infra-red techniques selection of test cases based on thermal design driving parameters and/or test chamber capabilities adequate instrumentation (i.e. thermocouples, test heaters) for all critical components (un)expected events e.g.
Technical Paper

Cryo Component Test of Herschel EPLM

2003-07-07
2003-01-2463
The Herschel satellite is a space based telescope designed for the investigation of sub millimeter radiation from astronomical objects. The cryogenic system is an essential part of the telescope’s Extended Payload Module (EPLM). The cryogenic system has to provide an environment of sufficiently low temperatures to assure the proper functioning of the scientific payload. Main component of the cryogenic system is the cryostat, a huge vacuum vessel (see: Figure 1) with various cryogenic components inside. In order to qualify the components of the cryogenic system, multiple tests such as leak tests, thermal cycle tests, pressure cycle tests and vibration tests are performed. In this paper the test program for two cryo components, the rupture disc and a safety valve is discussed. The testing philosophy is presented and selected results of tests at ambient and low temperatures are shown.
X