Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Columbus ECLSS First Year of Operations

2009-07-12
2009-01-2414
The launch and activation of ESA's Columbus module in early 2008 marked the completion of more than 10 years of development. Since then the Columbus ECLS is operating, including its major European ECLSS assemblies such as Condensing Heat Exchanger (CHX), Condensate Water Separator, Cabin Fans and Sensors. The paper will report the experiences from the first year of operations in terms of events, failures and lessons learned. Examples of this is the description of some off-nominal situations (such as Condensate Removal and IMV Return Fan failure, and relevant troubleshooting), and the preparation to Columbus Reduced Condensation Mode, as requested by NASA in order to minimize the crew time needed to empty Condensate Water Tanks in US Lab.
Technical Paper

System Aspects for Humidity Removal under Zero Gravity

2000-07-10
2000-01-2312
The Columbus Orbital Facility (COLUMBUS) is the main European contribution to the ISS. Its Temperature and Humidity Control (THC) subsystem consists of the Condensing Heat Exchanger and Filter Assembly (CHXFA), the Condensate Water Separator Assembly (CWSA) and the Cabin Temperature Control Unit (CTCU). The paper provides a description of the THC subsystem and its equipment focusing on the humidity removal function which has shown to be the major design challenge. Design solutions have been realised by optimising all equipment of the THC with respect to its system needs. Test results both on equipment and on THC subsystem level are presented demonstrating that the humidity removal performance is adequate to meet the system requirements in the wide operational range of COLUMBUS.
Technical Paper

New Developed Space Qualified ECLSS Products for the ISS

2000-07-10
2000-01-2347
In the range of the Columbus Orbital Facility (COL) program, the European contribution to the International Space Station (ISS), DASA Dornier developed and qualified four new supporting devices for the Environmental Control and Live Support System (ECLSS) as listed below: 1. The Vacuum & Venting Pressure Sensor (VVPS). Based on the Pirani principle, it utilizes the pressure dependence of the gas thermal conductivity. 2. The Humidity Sensor (HS) provides information for the Thermal & Humidity Control System (THC). It works according to the dew point principle, guaranteeing a long stability over at least 10 years. 3. The Air Flow Sensor (AFS), working according to the hot wire anemometer principle, is dedicated to identify low air flow conditions. 4. The Waste Gas Line Shut-Off Valve (WLSOV), a DC motor driven ball type vacuum valve, was adapted to the space station requirements (e.g. noise and micro-g).
Technical Paper

Lessons Learned from the METOP Thermal Analysis and Testing

2003-07-07
2003-01-2461
Metop (METeorological OPerational satellite) is a series of three satellites designed to monitor the climate and improve weather forecasting. This paper describes the thermal analysis, thermal testing performed, and relevant lessons learned. For the thermal analysis campaigns it focuses on: exchange and correlation of reduced thermal mathematical models established in various software formats sizes and content of the models, in particular automatic generation of reduced models from the detailed models uncertainties definitions of thermal interfaces The lessons learned from the thermal testing campaigns apply to: selection of test environment, using solar simulation and/or infra-red techniques selection of test cases based on thermal design driving parameters and/or test chamber capabilities adequate instrumentation (i.e. thermocouples, test heaters) for all critical components (un)expected events e.g.
X