Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

The Impact of Emerging Technologies on Tactical V/STOL Airplane Design and Utility

1977-02-01
770985
A new look at tactical combat V/STOL design and utility as affected by emerging technology and mission concepts is given in this paper. History has shown that a certain level of useful load fraction must be attained before an airplane system can be considered operationally successful. Technology trends reviewed in this paper suggest that the time is here or at least near for V/STOL tactical aircraft to achieve a truly viable useful load fraction. Propulsion, structure, and controls technologies will contribute to the success of the tactical V/STOL system. In addition, aerodynamic technology as related to interference effects in hover and transition, and as required for efficient supersonic cruise and combat, significantly impacts the design solution. A unique approach to system design risk assessment is described with results giving technology leverage as a function of design options.
Journal Article

Flight in Icing Regulatory Evolution and the Influence on Aircraft Design

2019-06-10
2019-01-1958
Flight in icing for transport category aircraft certification presents a particularly challenging set of considerations to establish adequate safety commensurate with the associated risk while balancing design complexity and efficiency. A review highlighting important aspects of the regulatory evolution and guiding principles for flight in icing certification is presented, including the current standards and recent rulemaking activity.
Journal Article

Flex Track One Sided One Up Assembly

2014-09-16
2014-01-2274
The Boeing Company is striving to improve quality and reduce defects and injuries through the implementation of lightweight “Right Sized” automated drill and fasten equipment. This has lead to the factory adopting Boeing developed and supplier built flex track drill and countersink machines for drilling fuselage circumferential joins, wing panel to spar and wing splice stringers. The natural evolution of this technology is the addition of fastener installation to enable One Up Assembly. The critical component of One Up Assembly is keeping the joint squeezed tightly together to prevent burrs and debris at the interface. Traditionally this is done by two-sided machines providing concentric clamp up around the hole while it is being drilled. It was proposed that for stiff structure, the joint could be held together by beginning adjacent to a tack fastener, and assemble the joint sequentially using the adjacent hole clamp up from the previous hole to keep the joint clamped up.
Technical Paper

Development of Sonic Design Data for Engineering Plastics Used for Strut and Nacelle Applications

1990-09-01
901985
Engineering plastics are now available for use on lightly loaded aircraft structure. These materials have excellent cost benefits as well as producibility benefits over their hand laidup predecessors. They are especially useful in the strut and nacelle areas where many of the fairings are attached for aerodynamic purposes only and may have rather complicated contours. In addition to lower costs, the manufacturing process is consistent, unlike hand laidup parts, which often require rework. In the strut and nacelle area one of the major requirements for all parts is sonic durability. This paper is intended to explain the test setup and test procedure for sonic testing of thermoplastics and thermosets and the results of the testing up to this point. Included in this explanation will be the assumptions made, the test setup, results of the testing and conclusions drawn from the testing.
Technical Paper

Automated Floor Drilling Equipment for the Next Generation 737

1997-09-30
972809
Boeing needed a process to replace hand drilling for floor panel holes and galley and lavatory mounting locator holes in the floor grid of the completed 737 fuselage. Electroimpact developed a process, and the 737 AFDE machine, that is a substantial improvement over existing technology. It provides full CNC control, quick reconfiguration of hole patterns, fast drilling of up to 3000 holes in one 8-hour shift, drills both titanium and aluminum and works inside the fuselage.
X