Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The Challenges Identifying Weather Associated With Jet Engine Ice Crystal Icing

2011-06-13
2011-38-0094
This paper presents the latest findings resulting from ongoing research on jet engine ice crystal icing. It specifically focuses on the challenges for pilots to identify and potentially avoid weather associated with this type of engine icing. The case will be made that jet engine power loss and damage events are not only still occurring, but the overall number of events per year is increasing. Several case studies will be presented to illustrate that each event can vary significantly when viewed from the flight deck even though weather conditions are similar for each. Findings will be presented related to new events that are occurring on engines that were not previously affected along with new engine symptoms. Ongoing meteorological research has shed new light on how to identify weather associated with engine events utilizing infrared satellite imagery combined with atmospheric temperature profiles.
Technical Paper

Studies of Cloud Characteristics Related to Jet Engine Ice Crystal Icing Utilizing Infrared Satellite Imagery

2015-06-15
2015-01-2086
The significant problem of engine power-loss and damage associated with ice crystal icing (ICI) was first formally recognized by the industry in a 2006 publication [1]. Engine events described by the study included: engine surge, stall, flameout, rollback, and compressor damage; which were triggered by the ingestion of ice crystals in high concentrations generated by deep, moist convection. Since 2003, when ICI engine events were first identified, Boeing has carefully analyzed event conditions documenting detailed pilot reports and compiling weather analyses into a database. The database provides valuable information to characterize environments associated with engine events. It provides boundary conditions, exposure times, and severity to researchers investigating the ICI phenomenon. Ultimately, this research will aid in the development of engine tests and ICI detection/avoidance devices or techniques.
Technical Paper

Reducing Design Time, Part Cost, and Manufacturing Risk on New Airplane Projects Using Intelligent Software Solutions

2007-09-17
2007-01-3927
New and derivative commercial jetliner programs face increased pressure to reduce cost, shorten development cycles, increase production rates, and create an increasingly fuel efficient aircraft. The industry also has limited engineering resources and suppliers with manufacturing capacity constraints. Designing parts right the first time, while concurrently taking into account available and proven manufacturing techniques, is crucial to meeting product development schedule and profitability goals. New, knowledge-based software solutions bridge the gap between design, manufacturing, and the supply chain, assuring timely, cost effective, and correctly manufactured products. Boeing Commercial Airplanes used a unique knowledge-based software solution to analyze one of the most complicated jetliner parts: the titanium part joining the wing to the aircraft body.
Technical Paper

Development of a Multi Spindle Flexible Drilling System for Circumferential Splice Drilling Applications on the 777 Airplane

2008-09-16
2008-01-2298
Flex Track Drilling systems are being used increasingly in aerospace applications providing low cost, highly efficient automated drilling systems. Certain applications like circumferential splice drilling on large size airplane fuselages require multi spindle flex track systems working in tandem to meet production efficiency requirements. This paper discusses the development of a multi spindle flex track drilling system for a circumferential splice drilling on the 777 airplane. The multi spindle system developed uses a variety of flex track carriages attached to the flexible vacuum tracks to allow for offset or wide inside drilling. Segmented machine programmes allow these multiple machines to be deployed on the same circumferential splice on the airplane providing the multi spindle system. Interfacing of the multiple spindles is achieved by a custom OEM interface using a single screen thereby ensuring simplicity of operation.
Journal Article

Development & Implementation of an Electric Boring Process for the Frame Lug for Main Landing Gear Swing Link on the 777 Airplane

2008-09-16
2008-01-2291
This paper discusses the process development and implementation of an Electric Boring process for boring the Frame Lug for the Main Landing Gear (MLG) Swing Link bushing on the 777 Airplane. Due to the process reliability issues associated with the equipment traditionally used for this process, primarily air driven right angle motors, a boring process using electric motors was developed and implemented for this application. The process development focused on equipment selection based on horsepower/torque requirements, laboratory testing for cutting parameters and bore quality generation, equipment reliability testing under operational loads and process efficiency validation. The implementation programme involved the detail design and fabrication of protective enclosure (explosion proof) hardware to prevent the electric motor and its connections from being contaminated by various fluids used in processes in the vicinity of this application.
Technical Paper

Automated Removal of Temporary Fasteners on Wing Panels

2000-09-19
2000-01-3031
Current practice for assembly of wing skins to wing stringers utilizes temporary aluminum lock bolts prior to squeeze riveting. Removing and replacing these fasteners is time consuming and hazardous. We have automated the wing riveters to perform this replacement process. This paper discusses the four areas of development that were carried out to accomplish this: tack fastener installation, machine vision system development, drill development and new tooling. Testing results and new findings will be discussed.
Technical Paper

An Investigation into Location and Convective Lifecycle Trends in an Ice Crystal Icing Engine Event Database

2015-06-15
2015-01-2130
In the last several years, the aviation industry has improved its understanding of jet engine events related to the ingestion of ice crystal particles. Ice crystal icing has caused powerloss and compressor damage events (henceforth referred to as “engine events”) during flights of large transport aircraft, commuter aircraft and business jets. A database has been created at Boeing to aid in analysis and study of these engine events. This paper will examine trends in the engine event database to better understand the weather which is associated with events. The event database will be evaluated for a number of criteria, such as the global location of the event, at what time of day the event occurred, in what season the event occurred, and whether there were local meteorological influences at play. A large proportion of the engine events occur in tropical convection over the ocean.
X