Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Optimal Control Allocation for Electric Aircraft Taxi Systems: A Preliminary Study

2014-09-16
2014-01-2137
Demonstrators and research projects about electric aircraft taxi systems testify the current interest in low- or zero-emission ground propulsion technologies to lower the overall fuel consumption and emissions of commercial flights. Electric motors fitted in the main landing gears are one of the most promising layouts for these systems especially for narrow-body commercial aircraft. From a control theory point of view, the aircraft on ground becomes an over-actuated plant through adoption of this technology, i.e. a commanded ground trajectory can be reached through different combinations of actuator efforts. A strategy is required to choose the most suitable of these combinations in order to reach the best efficiency. This work aims to investigate a strategy for an optimal control allocation during path-following of prescribed ground trajectories.
Technical Paper

Model-Based Thermal Management Functions for Aircraft Systems

2014-09-16
2014-01-2203
This paper describes a novel Thermal Management Function (TMF) and its design process developed in the framework of the Clean Sky project. This TMF is capable of calculating optimized control signals in real-time for thermal management systems by using model-based system knowledge. This can be either a physical model of the system or a data record generated from this model. The TMF provides control signals to the air and vapor cycle which are possible sources of cooling power, as well as load reduction or shedding signals. To determine an optimal cooling split between air cycle, vapor cycle, and its associated ram air channels, trade factors are being used to make electrical power offtake and ram air usage (i.e. drag) comparable, since both have influence on fuel consumption. An associated development process is being elaborated that enables a fast adaptation of the TMF to new architectures and systems. This will be illustrated by means of a bleedless thermal management architecture.
Technical Paper

Exploitation Strategies of Cabin and Galley Thermal Dynamics

2017-09-19
2017-01-2037
The thermal inertia of aircraft cabins and galleys is significant for commercial aircraft. The aircraft cabin is controlled by the Environment Control System (ECS) to reach, among other targets, a prescribed temperature. By allowing a temperature band of ± 2 K instead of a fixed temperature, it is possible to use this thermal dynamic of the cabin as energy storage. This storage can then be used to reduce electrical peak power, increase efficiency of the ECS, reduce thermal cooling peak power, or reduce engine offtake if it is costly or not sufficiently available. In the same way, also the aircraft galleys can be exploited. Since ECS and galleys are among the largest consumers of electrical power or bleed air, there is a large potential on improving energy efficiency or reducing system mass to reduce fuel consumption of aircraft. This paper investigates different exploitation strategies of cabin and galley dynamics using modelling and simulation.
Journal Article

Assessing Environmental Benefits of Electric Aircraft Taxiing through Object-Oriented Simulation

2012-10-22
2012-01-2218
A number of promising technologies to perform ground movements without main engines are currently being researched. Notably, onboard ground propulsion systems have been proposed featuring electric motors in the landing gear. While such on-board systems will help save fuel and avoid emissions while on ground, they add significant weight to the aircraft, which has an impact on the performances in flight. A tool to assess the global benefits in terms of fuel consumption and emissions is presented in this work. A concept of an aircraft-integrated ground propulsion system is firstly considered and its performances and weights are determined, assuming the Auxiliary Power Unit or a zero-emission device like a fuel-cell as power source for the system. Afterwards, a model of the propulsion system integrated into an object-oriented, mid-sized aircraft model is generated, capable of precisely simulating a whole aircraft mission.
Technical Paper

A New 1D2D Optical Array Particle Imaging Probe for Airborne and Ground Simulation Cloud Measurements

2023-06-15
2023-01-1415
A new optical array imaging probe, called the 1D2D probe, has been developed by Science Engineering Associates, with features added to improve the real-time and post-analysis measurements of particle spectra, particularly in the Supercooled Large Droplet size range. The probe uses optical fibers and avalanche photodiodes to achieve a very high frequency response, and a Field-Programmable Gate Array that performs real-time particle rejection and processing of accepted particles with negligible inter-particle dead time. The probe records monochromatic two-dimensional images, while also recording the number of individual particle pixels at a second grey scale level. The probe implements flexible features to filter recording of highly out of focus particles to improve the accuracy of particle size determination, or to reject small particles to improve the statistics of measurements of larger particles.
X