Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Predicting the Thermal State of Generators On-Board UAVs

2013-09-17
2013-01-2251
On future Unmanned Air Vehicles (UAVs) it is envisaged that the power requirements of all on-board electrical systems will increase. Whilst, in most flight (mission) situations the installed generation capacity will have adequate capacity to operate the systems, it is possible that during certain abnormal situations the generators on-board may be forced to operate under very high load conditions. The main failure mechanism for a generator is overheating and subsequent disintegration of windings, hence the research problem being addressed here is that of modelling the thermal dynamics of a generator in such a way that the model can be used to predict future temperatures given knowledge of the future mission requirements. The temperature predictions will be used to allow prioritising of the mission actions in order to allow maximum utilisation of power generation capacity without overheating.
Technical Paper

Metrics based design of electromechanical coupled reduced order model of an electric powertrain for NVH assessment

2024-06-12
2024-01-2913
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive.
Technical Paper

Methods to Control Curing Induced Distortion in Hybrid Joining of Dissimilar Metals

2020-09-25
2020-28-0401
In lightweight structures with dissimilar metal designs, structural adhesive joining is a potential joining method. Adhesives help in reducing galvanic corrosion by minimizing physical contact between two dissimilar metals. Along with adhesives, fasteners are often used as a secondary joining method to hold the assembly together during adhesive curing. Therefore, a hybrid joint which is a combination of adhesives and mechanical fasteners is potential joining method to join dissimilar metals. However, when two dissimilar metals such as aluminum to steel are joined with hybrid joint by adhesive curing at elevated temperature, the distortion of assembly is observed when cooled at room temperature. This is due to the mismatch between coefficients of thermal expansion of aluminum vs steel. The adhesive may also experience residual stress and fracture. In this study, adhesive curing induced distortion is studied using 1.1 meter-long specimens of aluminum to steel hybrid joint assembly.
Technical Paper

Managing Loads on Aircraft Generators to Prevent Overheat In-Flight

2014-09-16
2014-01-2195
On future UAVs it is envisaged that the power requirements of all on-board electrical systems will increase. In most flight (mission) situations the installed power generation will have adequate capacity to operate the aircraft. It is possible that during abnormal situations such as coolant blockage the generators on-board may be forced to operate under very high load conditions. The main failure mechanism for a generator is overheating and subsequent disintegration of windings, hence the research problem being addressed here is to manage the loads upon the generator to prevent overheats. The research presented here summarizes the modeling of the generator and formation of the load management system. Results are presented showing the system reallocating loads after a fault during flight, preventing overheat of the generators and successfully completing the mission.
Journal Article

Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

2011-04-12
2011-01-1136
It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil-derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter.
Technical Paper

Engine Test Protocol for Accelerated Ash Loading of a Diesel Particulate Filter

2011-04-12
2011-01-0607
Diesel particulate filters with a quantity of ash corresponding to the service interval (4500 hours) are needed to verify that soot loading model predictions remain accurate as ash accumulates in the DPF. Initially, long-term engine tests carried out for the purpose of assessing engine and aftertreatment system durability provided ash-loaded DPFs for model verification. However, these DPFs were found to contain less ash than expected based on lube oil consumption, and the ash was distributed uniformly along the length of the inlet channels, as opposed to being in the form of a plug at the outlet end of those channels. Thus, a means of producing DPFs with higher quantities of ash, distributed primarily as plugs, was required. An engine test protocol was developed for this purpose; it included the following: 1) controlled dosing of lube oil into the fuel feeding the engine, 2) formation of a soot cake within the DPF, and 3) periodic active regenerations to eliminate the soot cake.
Technical Paper

Aerodynamic Side Forces on Passenger Cars at Yaw

2016-04-05
2016-01-1620
Side force has an influence on the behaviour of passenger cars in windy conditions. It increases approximately linearly with yaw angle over a significant range of yaw for almost all cars and the side force derivative, (the gradient of side force coefficient with yaw angle), is similar for vehicles of a given category and size. The shape factors and components which affect side force for different vehicle types are discussed. The dominant influence on side force, for most cars, however, is shown to be the vehicle height which is consistent with slender wing theory if the car and its mirror image are considered. This simple theory is shown to apply to 1-box and 2- box shapes, covering most MPVs, hatchbacks and SUVs, but does not adequately represent the side forces on notchback and fastback car shapes. Data from simple bodies is used to develop a modification to the basic theory, which is applied to these vehicle types.
Journal Article

Aerodynamic Drag of Passenger Cars at Yaw

2015-04-14
2015-01-1559
The aerodynamic drag characteristics of a passenger car are typically defined by a single parameter, the drag coefficient at zero yaw angle. While this has been acceptable in the past, it may not allow a true comparison between vehicles with regard to the impact of drag on performance, especially fuel economy. An alternative measure of aerodynamic drag should take into account the effect of non-zero yaw angles and some proposals have been made in the past, including variations of wind-averaged drag coefficient. For almost all cars the drag increases with yaw, but the increase can vary significantly between vehicles. In this paper the effect of various parameters on the drag rise with yaw are considered for a range of different vehicle types. The increase of drag with yaw is shown to be an essentially induced drag, which is strongly dependent on both side force and lift. Shape factors which influence the sensitivity of drag with yaw are discussed.
Journal Article

Aerodynamic Drag Reduction on a Simple Car-Like Shape with Rear Upper Body Taper

2013-04-08
2013-01-0462
Various techniques to reduce the aerodynamic drag of bluff bodies through the mechanism of base pressure recovery have been investigated. These include, for example, boat-tailing, base cavities and base bleed. In this study a simple body representing a car shape is modified to include tapering of the rear upper body on both roof and sides. The effects of taper angle and taper length on drag and lift characteristics are investigated. It is shown that a significant drag reduction can be obtained with moderate taper angles. An unexpected feature is a drag rise at a particular taper length. Pressure data obtained on the rear surfaces and some wake flow visualisation using PIV are presented.
Technical Paper

A Fuel Cell System Sizing Tool Based on Current Production Aircraft

2017-09-19
2017-01-2135
Electrification of aircraft is on track to be a future key design principal due to the increasing pressure on the aviation industry to significantly reduce harmful emissions by 2050 and the increased use of electrical equipment. This has led to an increased focus on the research and development of alternative power sources for aircraft, including fuel cells. These alternative power sources could either be used to provide propulsive power or as an Auxiliary Power Unit (APU). Previous studies have considered isolated design cases where a fuel cell system was tailored for their specific application. To accommodate for the large variation between aircraft, this study covers the design of an empirical model, which will be used to size a fuel cell system for any given aircraft based on basic design parameters. The model was constructed utilising aircraft categorisation, fuel cell sizing and balance of plant sub-models.
X