Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Quiet, Clean, and Efficient, but Heavy - Concerns for Future Fuel Cell Powered Personal Air Vehicles

2006-08-30
2006-01-2436
Unfortunately, the promises of efficient, clean, quiet power that fuel cells offer are balanced by extremely low power densities and great infrastructure-related challenges. Studies by government and industry have investigated their feasibility for primary propulsion in light aircraft. These studies have produced mixed results but have tended to rely on integrating fuel cells into existing airframes, with respectably-performing light sport planes being turned into underpowered show planes with horribly compromised range and payload capabilities. Fuel cells today are in the earliest phases of technological development. As an aircraft propulsion system, they are as advanced as the Wright's reciprocating engine was a hundred years ago.
Technical Paper

Designing Ranged Sets of Top-Level Design Specifications for a Family of Aircraft: An Application of Design Capability Indices

1997-10-01
975513
Design capability indices provide a metric to assess the capability of a family of designs, represented by a range of top-level design specifications, to satisfy a ranged set of design requirements. Design capability indices can be used to manage design freedom in the early stages of the design process when design requirements for a system may be uncertain. To illustrate the use of design capability indices, the design of a family of General Aviation aircraft is presented: design capability indices are used to simultaneously design a family of three aircraft around a two, a four, and a six seater configuration. The results are compared against two of our previous studies.
Technical Paper

A General Aviation Aircraft Retrofit with a PEM Fuel Cell

2008-11-11
2008-01-2914
As gas prices and climate change become the preeminent issues of today, more research effort is being directed towards the development of cheaper and cleaner alternative energy sources. These efforts have been further complemented with research into the applicability of these sources to air, land and sea borne vehicles. In this report a notional C-172R general aviation aircraft is retrofitted with a PEM power plant as a case-study. Lower bounds for useful load and range are set in such a way that the results can be useful in determining how much improvement in the technology would be required to power a useful general aviation vehicle. It is seen that even at the predicted 2015 fuel cell technology level (per US Department of Energy projections), PEM systems would still be infeasible for this vehicle due to low specific power. Further investigation revealed that a PEM-battery hybrid system had better chances of feasibility.
X