Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Performance Evaluation of a Three-Stage Vacuum Rotary Distillation Processor

2000-07-10
2000-01-2386
Simulated spacecraft water recovery wastewater feed streams were purified with a three-stage vacuum rotary distillation processor (TVRD) during a series of tests conducted to evaluate the operation of this technology. The TVRD was developed to efficiently reclaim potable water from urine in microgravity by NIICHIMMASH (Moscow, Russia). A prototype was evaluated at the Honeywell Space Water Reclamation test lab, where a special test setup was assembled to evaluate the performance of the TVRD. This paper discusses the TVRD technology, test description, test results, and performance analysis. Tests were conducted using four streams of wastewater: pretreated human urine, bioprocessor effluent, reverse osmosis brine ersatz, and deionized water. The testing demonstrated that greater than 90 percent water recovery can be reached with production rates of 2.2 to 2.9 kg/hr (4.84 to 6.30 lb/hr).
Technical Paper

OS and Platform Independent Tool Qualification in Safety Critical Systems

2022-05-26
2022-26-0018
It’s a common practice to use different kinds tools to aid in the development and verification of modern safety critical avionics systems. These tools play a key role in avionics engineering and used in all project phases: requirements development, software design, source code development, integration, configuration management, and verification. Tools assist to analyze and improve system safety by automation of some of the activities which if performed manually and are therefore prone to human error. However, incorrect functioning of a tool can have negative impact on the safety and performance of the Safety Critical system. Hence, tools are proposed to be qualified whenever any of the design assurance process(es) described in RTCA/DO-178C or RTCA/DO-254 are eliminated, reduced, or automated using the tool unless the output of the tool is verified manually. Qualification of the tool gives confidence in the tool functionality.
Technical Paper

Integrated Modular Concepts for Improved ECLSS Command and Data Handling

2006-07-17
2006-01-2122
Current Environmental Control and Life Support Systems (ECLSS), particularly on large systems, have a tendency to include several heterogeneous processing elements. This approach is also the default in the commercial aircraft industry. However, Honeywell has been extremely successful in the past decade in using an integrated modular approach to command and data handling for aircraft avionics. This approach, dubbed “Fifth Generation Avionics” by the Air Force's Wright Laboratory, has resulted in significant reductions in the size, weight, power, and acquisition costs of the data handling subsystem. Logistics, modification, and upgrade costs also decreased considerably. While commonality is maximized in the integrated modular architecture, each application continues to be independent with internal designs completely under the control of the application developer.
Technical Paper

Inerting Aircraft Fuel Tanks - Reducing the Hazard

2000-07-10
2000-01-2267
Aircraft accidents caused by explosion of the vapor within the fuel tanks have been the subject of many recent articles. Methods of either suppressing the combustion or preventing the ignition have been considered. Indeed, solutions such as liquid nitrogen, halon, and reticulated foam have been installed on production aircraft. However, these have proved to be expensive to operate or are being phased out. By working together, the authors have developed the capability to provide fully integrated On-Board Inert Gas Generating Systems (OBIGGS) based on novel hollow fiber membrane technology. An overview of the advantages of such an approach is presented together with an outline of the system design method. The importance of considering the effect of differing flight profiles, and the inter-reactions of the OBIGGS, with the Fuel System, Engine Bleed Air Management, and Environmental Control Systems in the design process are emphasized.
Technical Paper

Industry Activities Related to Aircraft Information Security

2007-09-17
2007-01-3919
Commercial transport aircraft have adopted TCP/IP based onboard networking technology to integrate information interchange. This change along with the addition of a TCP/IP based air-ground data link will permit the aircraft network to establish links with ground networks and be integrated into the airline enterprise network. There are many challenging considerations when connecting a remote network to an enterprise network. These challenges are multiplied when that remote network is constantly in motion, both physically and in terms of its link to the ground network. An important consideration in any enterprise network is the element of security. AEEC has published ARINC Report 811: Commercial Aircraft Information Security Concepts of Operation and Process Framework [1] as a guide for the airlines as they consider how to deal with this new challenge.
Journal Article

Incorporation of Atmospheric Neutron Single Event Effects Analysis into a System Safety Assessment

2011-10-18
2011-01-2497
Atmospheric Neutron Single Event Effects (SEE) are widely known to cause failures in all electronic hardware, and cause proportionately more failures in avionics equipment due to the use altitude. In digital systems it is easy to show how SEE can contribute several orders of magnitude more faults than random (hard) failures. Unfortunately, current avionics Safety assessment methods do not require consideration of faults from SEE. AVSI SEE Task Group (Aerospace Vehicle Systems Institute Committee #72, on Mitigating Radiation Effects in Avionics) is currently coordinating development of an atmospheric Neutron Single Event Effects (SEE) Analysis method. This analysis method is a work in progress, in close collaboration with SAE S-18 and WG-63 Committees (Airplane Safety Assessment Committee). The intent is to include this method as part of current revisions to ARP4761 (Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment).
Technical Paper

Heat Exchanger Fouling Detection in Aircraft Environmental Control Systems

2012-10-22
2012-01-2107
The operating environment of aircraft causes accumulation and build-up of contamination on both the narrowest passages of the ECS (Environmental Control System) i.e: the heat exchangers. Accumulated contamination may lead to reduction of performance over time, and in some case to failures causing AOG (Aircraft on Ground), customer dissatisfaction and elevated repair costs. Airframers/airlines eschew fixed maintenance cleaning intervals because of the high cost of removing and cleaning these devices preferring instead to rely on on-condition maintenance. In addition, on-wing cleaning is t impractical because of installation constrains. Hence, it is desirable to have a contamination monitoring that could alert the maintenance crew in advance to prepare and minimize disruption when contamination levels exceed acceptable thresholds. Two methods are proposed to achieve this task, The effectiveness of these methods are demonstrated using analytical and computational tools.
Journal Article

Health Ready Components-Unlocking the Potential of IVHM

2016-04-05
2016-01-0075
Health Ready Components are essential to unlocking the potential of Integrated Vehicle Health Management (IVHM) as it relates to real-time diagnosis and prognosis in order to achieve lower maintenance costs, greater asset availability, reliability and safety. IVHM results in reduced maintenance costs by providing more accurate fault isolation and repair guidance. IVHM results in greater asset availability, reliability and safety by recommending preventative maintenance and by identifying anomalous behavior indicative of degraded functionality prior to detection of the fault by other detection mechanisms. The cost, complexity and effectiveness of the IVHM system design, deployment and support depend, to a great extent, on the degree to which components and subsystems provide the run-time data needed by IVHM and the design time semantic data to allow IVHM to interpret those messages.
Technical Paper

Development and Application of a Real Time Bleed Air Contamination Monitor

2002-11-05
2002-01-2925
The bleed air contamination monitor was developed at Honeywell to ensure that our products provide the highest quality bleed air to aircraft environmental control systems. The bleed air contamination monitor is currently for ground based applications only. It is being developed into an on board system for future applications. Current Aircraft Cabin Air Quality measurement techniques are very labor intensive and require days or even weeks of laboratory analysis to provide results. This is unacceptable from a manufacturing and service perspective. Development of a real time analyzer began in the early 1990s and has progressed to a point where a product is ready for introduction that not only provides real time information regarding engine air contamination, but is also easy for operators to use with a minimum amount of training.
Technical Paper

Designing User-Interfaces for the Cockpit: Five Common Design Errors and How to Avoid Them

2002-11-05
2002-01-2968
The efficiency and robustness of pilot-automation interaction is a function of the volume of memorized action sequences required to use the automation to perform mission tasks. This paper describes a model of pilot cognition for the evaluation of the cognitive usability of cockpit automation. Five common cockpit automation design errors are discussed with examples.
Technical Paper

Advanced Electric Generators for Aerospace More Electric Architectures

2010-11-02
2010-01-1758
This paper discusses the problem of designing electric machines (EM) for advanced electric generators (AEG) used in aerospace more electric architecture (MEA) that would be applicable to aircraft, spacecraft, and military ground vehicles. The AEG's are analyzed using aspects of Six Sigma theory that relate to critical-to-quality (CTQ) subjects. Using this approach, weight, volume, reliability, efficiency, and cost (CTQs) are addressed to develop a balance among them, resulting in an optimized power generation system. The influence of the machine power conditioners and system considerations are also discussed. As a part of the machine evaluation process, speeds, bearings, complexities, rotor mechanical and thermal limitations, torque pulsations, currents, and power densities are also considered. A methodology for electric machine selection is demonstrated. Examples of high-speed, high-performance machine applications are shown.
Technical Paper

Active vs. Passive Means of Power Quality Improvement in Aerospace Applications

2002-10-29
2002-01-3226
The issues of active vs. passive means of power quality improvement in aerospace applications are addressed. The concept of nonlinear load, i.e., the relationship between the current harmonics and system power factor has been reviewed. Both passive and active means of harmonic minimization are discussed, including resonance issues associated with passive networks and presenting an active rectifier switched in a Space Vector (SV) Pulse Width Modulation (PWM) manner. The analysis of power quality in aerospace applications is presented, together with the industry governing standards. Results of case studies are given, using Saber hierarchical tools for the system analysis. Both simulation and experimental results are provided, demonstrating power quality improvements in several aerospace applications.
X