Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Minimum Operational Performance Standards for Weather Radar Ice Crystal Detection Function

2023-06-15
2023-01-1433
The RTCA SC-230 committee began working on minimum operational performance standards (MOPS) for ice crystal detection using weather radar in 2018. The resulting MOPS document will be released in 2023. This paper presents the rationale, summarizes key requirements, and discusses means of validation for an ice crystal detection function incorporated in an airborne weather radar system.
Journal Article

High Altitude Ice Crystal Detection with Aircraft X-band Weather Radar

2019-06-10
2019-01-2026
During participation on EU FP7 HAIC project, Honeywell has developed methodology to detect High Altitude Ice Crystals with the Honeywell IntuVue® RDR-4000 X-band Weather Radar. The algorithm utilizes 3D weather buffer of RDR-4000 weather radar and is based on machine learning. The modified RDR-4000 Weather Radar was successfully flight tested during 2016 HAIC Validation Campaign; the technology was granted Technology Readiness Level 6 by HAIC consortium. After the end of HAIC project, the method was also evaluated with respect to newly set preliminary industry standard performance requirements1. This paper discuses technology design rationale, high level technology architecture, technology performance, and challenges associated with performance evaluation.
Technical Paper

An Algebraic-Summation-Based 3-ph Phase-Locked Loop in Aerospace Applications

2010-11-02
2010-01-1807
This work deals with modeling and analysis of a 3-phase Phase-Locked Loop (PLL) based on an algebraic-summation scheme rather than the Stationary/Floating frame transformation PLL or synchronous (Delta Q) frame transformation PLL, and operated to lock on either linear or nonlinear load current waveform, and in the presence of a loss of phase or unbalanced 3-phase load. The PLL scheme is described and performance results are presented, demonstrating its ability to estimate phase and frequency of the input signal in aerospace applications in which a Unity Vector production and a Frequency-to-Voltage conversion is performed.
X