Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Iodine Addition Using Triiodide Solutions

1992-07-01
921315
The STS water system is treated with iodinated water in order to prevent microbial contamination. This water is prepared by adding a concentrated solution of iodine to Ground Service Equipment (GSE) before adding the water in that unit to the spacecraft system. The solution is prepared by dissolving iodine in ethanol to make a tincture stock solution. While this procedure is rapid, the ethanol increases the carbon levels in the STS potable water and may produce unpleasant odors. The resulting high carbon levels preclude the use of total organic carbon measurements as a water quality monitoring tool. The use of triiodide solutions was studied as a substitute for using ethanol solutions. Two dissolution agents, sodium iodide and hydriodic acid, were investigated. Sodium iodide was studied at molar concentration ratios ranging from 1:1 to 2.5:1 sodium iodide to molecular iodine.
Technical Paper

Further Characterization and Multifiltration Treatment of Shuttle Humidity Condensate

1995-07-01
951685
On the International Space Station (ISS), humidity condensate will be collected from the atmosphere and treated by multifiltration to produce potable water for use by the crews. Ground-based development tests have demonstrated that multifiltration beds filled with a series of ion-exchange resins and activated carbons can remove many inorganic and organic contaminants effectively from wastewaters. As a precursor to the use of this technology on the ISS, a demonstration of multifiltration treatment under microgravity conditions was undertaken. On the Space Shuttle, humidity condensate from cabin air is recovered in the atmosphere revitalization system, then stored and periodically vented to space vacuum. A Shuttle Condensate Adsorption Device (SCAD) containing sorbent materials similar to those planned for use on the ISS was developed and flown on STS-68 as a continuation of DSO 317, which was flown initially on STS-45 and STS-47.
Technical Paper

Evaluation of Capillary Electrophoresis for In-flight Ionic Contaminant Monitoring of SSF Potable Water

1992-07-01
921268
Until 1989, ion chromatography (IC) was the baseline technology selected for the Specific Ion Analyzer, an in-flight inorganic water quality monitor being designed for Space Station Freedom. Recent developments in capillary electrophoresis (CE) may offer significant savings of consumables, power consumption, and weight/volume allocation, relative to IC technology. A thorough evaluation of CE's analytical capability, however, is necessary before one of the two techniques is chosen. Unfortunately, analytical methods currently available for inorganic CE are unproven for NASA's target list of anions and cations. Thus, CE electrolyte chemistry and methods to measure the target contaminants must be first identified and optimized. This paper reports the status of a study to evaluate CE's capability with regard to inorganic and carboxylate anions, alkali and alkaline earth cations, and transition metal cations.
X